改进YOLOv5s的接触网小零件检测方法
DOI:
CSTR:
作者:
作者单位:

大连交通大学詹天佑学院大连116000

作者简介:

通讯作者:

中图分类号:

U225.4;TN911.73

基金项目:

国家自然科学基金青年基金(62001079)项目资助


Detection method for contact mesh small parts based on improved YOLOv5s
Author:
Affiliation:

School of Zhan Tianyou, Dalian Jiaotong University, Dalian 116000,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    铁路接触网是向电力牵引车辆供电的核心设备,其状态直接影响列车运行安全。在6C系统检测接触网状态时,准确定位各类零部件的位置是首要任务。针对铁路接触网关键小零件(开口销、管套和定位器支座的螺母)因尺寸小、环境复杂导致难以精确定位的问题,提出了一种基于改进YOLOv5s的小目标检测方法。首先,将特征提取网络的C3模块与线性可变形卷积(LDConv)结合,设计出新的C3_LD模块。该模块通过可变形卷积核自适应调整感受野,有效捕捉小目标的几何形变特征,提高特征提取能力的同时降低了参数量;其次,替换原本快速空间金字塔池化(SPPF)结构设计了SPPFCSPC_group结构,通过分组卷积与多尺度空间金字塔结合,提高了网络多尺度特征表达能力;最后,将原损失函数替换为SIoU函数,通过预测框和真实框之间的空间约束来提高边界框的回归精度。消融实验和对比实验结果表明,改进后的算法在接触网小零件检测任务中实现了93.2%的平均精度均值(mAP)和93.1%的召回率,相较于原算法分别提高了1.9%和3.6%,有效缓解了接触网小零件的漏检和误检问题。

    Abstract:

    Railway catenary system is the core equipment to supply power to electric traction vehicles, and its state directly affects the safety of train operation. In order to solve the problem that the key small components (split pin, tube sleeve and nut of positioner bracket) in the railway catenary are difficult to accurately locate due to their small size and complex environment, a small target detection method based on improved YOLOv5s is proposed. Firstly, the C3 module of the feature extraction network is combined with the linear deformable convolution (LDConv) to design a new C3_LD module. The proposed module employs deformable convolution kernels to dynamically adjust receptive fields, which effectively captures geometric deformation characteristics of small targets. This design not only enhances feature extraction capability but also reduces parameter. Secondly, the SPPFCSPC_group structure is designed to replace the original SPPF structure, and the multi-scale feature expression ability of the network is improved by combining group convolution with multi-scale spatial pyramid. Finally, the original loss function is replaced by spatial intersection over union (SIoU), which enhances bounding box regression accuracy through spatial constraints between predicted and ground-truth boxes. The results of ablation experiments and comparison experiments show that the improved algorithm in this paper achieves 93.2% mean average precision (mAP) and 93.1% recall rate in the detection task of railway catenary mesh small components, which are 1.9% and 3.6% higher than those of the original algorithm, which effectively alleviates the missed detection and false detection problems of railway catenary small components.

    参考文献
    相似文献
    引证文献
引用本文

何奕霏,刘晓东,赵兴,吴桐,李花.改进YOLOv5s的接触网小零件检测方法[J].电子测量与仪器学报,2025,39(9):150-158

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-09
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
关于防范虚假编辑部邮件的郑重公告