结合Retinex与扩散模型的低照度图像增强方法
DOI:
CSTR:
作者:
作者单位:

1.湖南师范大学工程与设计学院长沙410081;2.智能传感与康复机器人湖南省高校重点实验室长沙410081; 3.机器人视觉感知与控制技术国家工程研究中心长沙410082

作者简介:

通讯作者:

中图分类号:

TP391.41; TN01

基金项目:

国家自然科学基金(62007007,62277004)、湖南省学位与研究生教学改革研究重点项目(2022JGZD026)、湖南省自然科学基金(2023JJ30415,2022JJ30395)、湖南省自然科学基金(2025JJ50362)、湖南省教育厅优秀青年项目(24B0081)资助


Low-light image enhancement based on Retinex theory and diffusion model
Author:
Affiliation:

1.School of Engineering and Design, Hunan Normal University, Changsha 410081,China; 2.The Key Laboratory of Intelligent Sensing and Rehabilitation Robotics of Hunan Province Universities, Changsha 410081,China; 3.National Engineering Research Center of Robot Visual Perception and Control Technology, Changsha 410082,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有基于 Retinex 理论的低照度图像增强方法存在的缺陷,如训练方式复杂、训练过程中光照分量和反射分量真值的获取难题,以及对于光照条件极差情况下的图像增强,往往还伴随着放大暗处噪声以及丢失图像结构细节等影响图像质量的问题。本文提出了端到端的两阶段图像增强网络,结合Retinex理论与扩散模型对低照度图像进行增强。第1阶段根据Retinex理论,重点关注提升低照度图像亮度,提出采用卷积神经网络估计三通道光照比图,与低照度图像点积得到初步的增强处理的结果;单纯的Retinex方法基本没有考虑到在点亮图像过程中藏匿于暗处的退化,将低照度图像初步提亮后,第2阶段侧重于利用扩散模型优秀的去噪能力对图像进行去噪修复,提出亮度感知扩散模型,将HSI颜色空间的亮度图作为条件,充分利用扩散模型的优势来修复初步增强过程中的退化,并由颜色校正模块来减轻扩散模型逆过程中可能出现的全局劣化,得到增强后的图像。实验结果表明,在低照度数据集上与近年来其他10种优秀的算法相比较,训练测试得到的结果在峰值信噪比与图像感知相似度指标分别为27.517和0.087,均优于进行实验的其他方法,结构相似性为0.874,取得次优值。提出的方法能很好地适应未知噪声和光照的分布,在提升图像亮度、去除图像噪声以及防止图像细节模糊等方面取得了较好的效果,能够得到更自然以及更高质量的图像增强效果。

    Abstract:

    To address the flaws of existing low-light image enhancement methods based on Retinex theory, such as complex training procedures, difficulties in acquiring the ground truths of illumination and reflection components during training, and issues affecting image quality by amplifying dark-region noise and losing structural details when enhancing images under extremely poor lighting conditions, this paper proposes an end-to-end two-stage image enhancement network that combines Retinex theory with diffusion models. In the first stage, guided by Retinex theory, the focus is on improving the brightness of low-light images. A convolutional neural network (CNN) is adopted to estimate the three-channel illumination ratio map, which is then dot-multiplied with the low-light image to obtain the initial enhanced result. Pure Retinex methods barely consider the degradations hidden in dark areas during brightness enhancement. After initially brightening the low-light image, the second stage focuses on denoising and restoring the image using the excellent denoising capability of diffusion models. A brightness-aware diffusion model is proposed, which takes the luminance map in the HSI color space as a condition to fully leverage the advantages of diffusion models in repairing degradations from the initial enhancement. A color correction module is also introduced to mitigate potential global degradation during the inverse process of the diffusion model, yielding the final enhanced image. Experimental results show that compared with 10 other state-of-the-art algorithms on low-light datasets, the proposed method achieves a peak signal-to-noise ratio (PSNR) of 27.517 and a structural similarity index (SSIM) of 0.874 (a near-optimal value), along with an image perception similarity of 0.087-all outperforming the compared methods. The proposed method can well adapt to the distributions of unknown noise and illumination, achieving excellent performance in brightness enhancement, noise removal, and detail preservation, and generating more natural and high-quality enhanced images.

    参考文献
    相似文献
    引证文献
引用本文

邹伊雯,卢笑,汪鲁才,吴成中,王耀南.结合Retinex与扩散模型的低照度图像增强方法[J].电子测量与仪器学报,2025,39(9):182-191

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-09
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
关于防范虚假编辑部邮件的郑重公告