基于PPG技术的无创生理参数检测平台构建方法研究
DOI:
CSTR:
作者:
作者单位:

1.重庆大学生物工程学院重庆400044;2.重庆大学生物流变科学与技术教育部重点实验室重庆400044

作者简介:

通讯作者:

中图分类号:

TN21;R318.6

基金项目:

重庆市研究生科研创新项目(CYB23073, CYS240070)、重庆市自然科学基金(cstc2020jcyj-msxmX0571)项目资助


Research on the construction method of non-invasive physiological parameterdetection platform based on PPG technology
Author:
Affiliation:

1.School of Biomedical Engineering, Chongqing University, Chongqing 400044, China; 2.Key Laboratory of Biorheological Science and Technology,Chongqing University, Chongqing 400044, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对各类基于光电容积脉搏波(photoplethysmography, PPG)信号的人体无创生理参数检测技术,构建一个由穿戴式设备硬件平台及数据处理分析与模型部署软件平台组成的人体生理参数无创检测分析与管理系统。基于PPG检测的基本原理,结合无创生理参数检测模型所需信息,搭建了一套穿戴式采集设备,用于采集用户手部不同位置的多波长多通道PPG信号,并同步采集体温及运动数据,在此基础上构建了基于该穿戴式设备的数据处理分析应用程序,作为无创生理参数检测模型的部署平台,实现对前端数据的处理及分析功能,用户结合软件提供的数据管理及健康评估等功能实现自身健康管理需求。所实现的穿戴式设备能够稳定且有效地采集高质量的PPG信号,为人体无创生理参数检测模型提供了可靠的数据基础。以血糖无创检测模型为例,样本总体预测结果均方根误差为0.888 mmol/L,克拉克误差网格A区域占比为84.086%,测试结果展现出了良好的准确性和跟随性,模型嵌入软件平台可离线使用,便于用户日常血糖水平的检测和管理。用户通过该平台可以轻松采集并记录PPG信号数据,结合多样化的生理参数无创检测模型,获得丰富的人体健康评估关键参数;此外,系统还提供参数管理的接口,帮助用户评估和管理自己的健康水平。

    Abstract:

    For various types of non-invasive physiological parameter detection technologies based on photoplethysmography (PPG) signals, a non-invasive detection and management system for human physiological parameters is constructed, which consists of a hardware platform for wearable device and a software platform for data processing, analysis and model deployment. In this paper, based on the basic principle of PPG detection, combined with the information required for the non-invasive physiological parameter detection models, a set of wearable acquisition device is built for collecting multi-wavelength and multi-channel PPG signals from different positions of the user’s hand, and synchronously collecting body temperature and motion data, on the basis of which a data processing and analysis application is constructed based on the wearable device as the deployment platform for the non-invasive physiological parameter detection models, which realizes the processing and analysis of front-end data, and the users can realize their own health management needs by combining the data management and health assessment functions provided by the software. The realized wearable device can stably and effectively collect high-quality PPG signals, which provides a reliable data basis for the non-invasive physiological parameter detection models. Taking the non-invasive glucose detection model as an example, the root mean square error of the overall prediction result of the sample is 0.888 mmol/L, and the percentage of Clark’s error grid area A is 84.086%, the test results show good accuracy and followability, and the model is embedded in a software platform that can be used offline, which makes it easy for users to detect and manage their daily glucose levels. Users can easily collect and record PPG signal data through the platform, combined with diverse physiological parameters non-invasive detection models, to obtain a wealth of key parameters for human health assessment; in addition, the system also provides interfaces for parameter management to help users assess and manage their own health levels.

    参考文献
    相似文献
    引证文献
引用本文

谢鹏飞,程锦绣,饶凌瑄,季忠.基于PPG技术的无创生理参数检测平台构建方法研究[J].电子测量与仪器学报,2025,39(11):23-32

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-02-03
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
关于防范虚假编辑部邮件的郑重公告