航空活塞发动机进排气堵塞的常规与燃烧视角深度特征诊断研究
DOI:
CSTR:
作者:
作者单位:

昆明理工大学民航与航空学院昆明650500

作者简介:

通讯作者:

中图分类号:

V234;TN98

基金项目:

国家自然科学基金(61863017)项目资助


Research on depth feature diagnosis of convention and combustion perspectives with intake or exhaust blockage for aero piston engine
Author:
Affiliation:

Faculty of Civil Aviation and Aeronautics, Kunming University of Science and Technology, Kunming 650500, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对进排气的不同堵塞程度会导致航空活塞发动机的性能退化问题,设计了基于常规进排气与缸内燃烧数据的双通道深度视角特征融合诊断模型。为增强对燃烧特征的提取能力,在构建的双通道深度卷积神经网络(DCNN)诊断架构的燃烧视角通道中引入自注意力机制(SA)。通过设定的5类不同程度进排气堵塞健康等级,获得海拔1 920 m的地面台架试验和发动机AMESim+Simulink联合仿真的性能退化数据集,且包含起飞与巡航两种典型工况。以螺旋桨转速2 300 r/min的起飞工况为案例,进行不同进排气堵塞程度的缸压变化趋势分析、各网络层的t-SNE深度特征分布及分类诊断分析,并借助模型组件消融实验进一步验证该诊断架构的合理性。结果表明,针对航空活塞发动机进排气堵塞案例的双通道自注意力深度卷积神经网络(SA-DCNN)诊断模型,其5类健康等级诊断的平均准确率分别达到98.95%和98.62%,表明该诊断模型具有较高的准确性。

    Abstract:

    To address the performance degradation problem of aero piston engine caused by different blockage degrees of intake and exhaust, a two-channel deep perspective feature fusion diagnostic model based on conventional intake or exhaust and cylinder combustion data was designed. So the self-attention (SA) mechanism was introduced into the combustion perspective channel of the constructed two-channel deep convolutional neural network (DCNN) diagnostic architecture, which enhanced the ability to extract combustion features. By setting five health levels of different degrees for intake or exhaust blockage, a performance degradation dataset was obtained for the ground bench tests at the altitude of 1 920 m and engine AMESim+Simulink joint simulations, including two typical operating conditions: takeoff and cruise. Using the takeoff condition at a propeller speed of 2 300 r/min as a study case, the trend analysis of cylinder pressure changed with different blockage degrees of intake or exhaust, the t-SNE depth feature distribution and classification diagnosis analysis of each network layer were carried out. And the rationality of the diagnostic architecture was further verified by the model component ablation experiment. The results showed that the two-channel diagnostic model of self-attention and deep convolutional neural network (SA-DCNN) for cases of intake or exhaust blockage on aero piston engine achieved an average accuracy of 98.95% and 98.62% on five levels of health diagnosis, respectively indicating that the diagnostic model had high accuracy.

    参考文献
    相似文献
    引证文献
引用本文

徐劲松,王博,韦宝涛,盛润.航空活塞发动机进排气堵塞的常规与燃烧视角深度特征诊断研究[J].电子测量与仪器学报,2025,39(11):234-245

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-02-03
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
关于防范虚假编辑部邮件的郑重公告