针对多尺度和小目标的道路缺陷检测模型
DOI:
CSTR:
作者:
作者单位:

1.三峡大学水电工程智能视觉监测湖北省重点实验室宜昌443002;2.三峡大学计算机与信息学院宜昌443002; 3.昆明理工大学信息工程与自动化学院昆明650504;4.昆明理工大学云南省人工智能重点实验室昆明650504

作者简介:

通讯作者:

中图分类号:

TP391.4; TN911.73

基金项目:

国家自然科学基金(61502274)项目资助


Road defect detection model for multi-scale and small targets
Author:
Affiliation:

1.Hubei Key Laboratory of Intelligent Vision Based Monitoring for Hydroelectric Engineering, China Three Gorges University, Yichang 443002, China; 2.School of Computer and Information Technology, China Three Gorges University, Yichang 443002, China; 3.Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650504, China; 4.Key Laboratory of Artificial Intelligence in Yunnan Province, Kunming University of Science and Technology, Kunming 650504, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对复杂道路场景中多尺度和形变道路缺陷检测的难题,提出一种改进的YOLOv8n道路缺陷检测模型DMS-YOLO(dynamic multi-scale YOLO)。首先,设计自适应上下文感知特征金字塔网络,实现多尺度特征的全局融合与动态加权,显著提升了模型对复杂缺陷的感知与表达能力,与现有主流特征金字塔网络相比,在精度和计算效率上表现出一定优势。其次,提出自适应多尺度动态检测头,采用可变形卷积(DCNv3)提升模型对复杂形状特征的捕捉能力,并设计协同注意力机制融合尺度和任务注意力,增强模型对多尺度信息的理解。最后,利用Focaler-IoU思想改进CIoU损失函数,提高对小目标的检测能力。实验结果表明,在减少计算量的基础上,DMS-YOLO模型在RDD2022数据集上mAP@0.5达到了87.9%,较原来的基准模型提高了3%,同时参数量为3.67×106,计算量为8 GFLOPs,模型体积仅有7.3 MB,具备轻量化特性和易部署性。同时,在SVRDD数据集上,DMS-YOLO在各项性能指标上均有提升,进一步验证了所提模型具有较好的泛化性和鲁棒性。与其他主流模型和最新检测算法相比,DMS-YOLO的综合指标均表现优异,对道路缺陷检测具有实际应用意义。

    Abstract:

    To address the challenges of detecting multi-scale and deformed road defects in complex road scenarios, an improved YOLOv8n model for road defect detection, named DMS-YOLO, is proposed. First, an adaptive context-aware feature pyramid network is designed to achieve global fusion and dynamic weighting of multi-scale features, significantly enhancing the model’s ability to perceive and express complex defects. Compared to existing mainstream feature pyramid networks, this approach demonstrates clear advantages in both accuracy and computational efficiency. Second, an adaptive multi-scale dynamic detection head is introduced, leveraging deformable convolution (DCNv3) to improve the model’s capability in capturing complex shape features, and a Collaborative Attention Mechanism is designed to integrate scale and task attention, enhancing the model’s understanding of multi-scale information. Finally, the CIoU loss function is improved using the Focaler-IoU idea to enhance the detection of small targets. Experimental results show that, with reduced computational cost, the DMS-YOLO model achieves a mAP@0.5 of 87.9% on the RDD2022 dataset, a 3% improvement over the baseline model. The model has 3.67×106 parameters, 8 GFLOPs of computational cost, and a model size of only 7.3 MB, demonstrating its lightweight nature and ease of deployment. Additionally, on the SVRDD dataset, DMS-YOLO improves on all performance metrics, further validating the model’s generalization and robustness. Compared to other mainstream models and state-of-the-art detection algorithms, DMS-YOLO shows superior overall performance, demonstrating its practical application value in road defect detection.

    参考文献
    相似文献
    引证文献
引用本文

李咏然,臧兆祥,唐庭龙.针对多尺度和小目标的道路缺陷检测模型[J].电子测量与仪器学报,2025,39(8):30-41

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-20
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
关于防范虚假编辑部邮件的郑重公告