基于智能形状匹配的零件全尺寸在线视觉检测方法
DOI:
CSTR:
作者:
作者单位:

1.江苏大学机械工程学院镇江212000;2.东南大学仪器科学与工程学院南京210096; 3.苏州超锐微电子有限公司苏州215004

作者简介:

通讯作者:

中图分类号:

TP391;TN247

基金项目:

镇江市重点研发计划(GY2023013)、泰州市科技支撑计划(工业)项目(202409)资助


Online vision-based full dimensional inspection method for parts based on intelligent shape matching
Author:
Affiliation:

1.School of Mechanical Engineering, Jiangsu University, Zhenjiang 212000, China; 2.School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China; 3.Suzhou Chaorui Microelectronics Co., Ltd, Suzhou 215004, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统视觉方法在测量不同工件全尺寸时的局限性,提出了一种基于形状匹配的工件全尺寸在线检测方法。该方法通过将目标工件图像输入到改进的Superpoin关键点检测网络,得到所有关键点,并利用关键点实现工件轮廓的描述;然后将关键点模板与目标工件的关键点一起输入点渲染层,使用增强关键点位置信息的Superglue特征全匹配算法,提取与模板点匹配的关键点,以及关键点之间的距离,实现工件的全尺寸测量。为了验证方法的有效性,分别进行了量块尺寸检测实验,标定板尺寸检测实验和原电池尺寸检测实验,实验结果表明,对于25 mm零级量块(精度优于±0.14 μm)的尺寸检测实验,系统十次重复测量结果的最大偏差为±0.02 mm,标准差为0.01 mm,表明系统具有较高的重复性精度;对于棋盘格标定板,尺寸测量误差不超过±0.03 mm,验证了该方法的可行性;在原电池的尺寸测量实验中,七号电池尺寸检测的误差范围为±0.03 mm,平均耗时为0.08 s,五号电池的尺寸检测误差为±0.03 mm,平均耗时为0.09 s,均能够满足该企业原电池产线生产过程中,在线检测的±0.05 mm精度要求和0.1 s的实时性检测要求。相比于传统算法需要针对不同工件采用不同的检测算法,所提出的方法能够有效适应不同工件的尺寸检测需求,并可广泛应用于工业现场的零件在线全尺寸检测。

    Abstract:

    To address the limitations of traditional vision-based methods in measuring the full dimensions of different workpieces, this paper proposes an online full-dimension inspection method for workpieces based on shape matching. The method inputs the target workpiece image into an improved Superpoint keypoint detection network to obtain all keypoints, which are then used to describe the workpiece contour. Then, the keypoint template and the keypoints of the target workpiece are fed into a point rendering layer. An enhanced Superglue feature matching algorithm with augmented keypoint location information is employed to achieve full matching, extracting keypoints that match the template points and measuring the distances between keypoints, thereby enabling full-dimension measurement of the workpiece. To validate the effectiveness of the proposed method, experiments were conducted, including gauge block size detection, calibration plate size detection, and electrochemical cell size detection. The experimental results indicate that for the size measurement experiment of a 25 mm Grade 0 gauge block (with an accuracy better than ±0.14 μm), the maximum deviation of the system’s ten repeated measurements was ±0.02 mm, and the standard deviation was 0.01 mm, demonstrating that the system has high repeatability accuracy. For the checkerboard calibration plate, the size measurement error does not exceed ±0.03 mm, verifying the feasibility of the proposed method. In the dimensional measurement experiment of primary batteries, the AAA battery size inspection had an error range of ±0.03 mm with an average processing time of 0.08 s, while the AA battery inspection showed an error of ±0.03 mm with an average time of 0.09 s. Both meet the enterprise’s production line requirements for online inspection, which demand ±0.05 mm accuracy and real-time detection within 0.1 s. Unlike traditional algorithms that require specific detection methods for different workpieces, the proposed approach exhibits strong adaptability to diverse dimensional detection requirements and is highly applicable for online full-size inspection of parts in industrial settings.

    参考文献
    相似文献
    引证文献
引用本文

许桢英,杨为涛,雷英俊,刘鑫,沙之洵.基于智能形状匹配的零件全尺寸在线视觉检测方法[J].电子测量与仪器学报,2025,39(8):218-229

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-20
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
关于防范虚假编辑部邮件的郑重公告