摘要:接地网作为保障电力系统安全的重要设备,其腐蚀状态检测的研究具有重大意义。电阻抗成像技术作为接地网腐蚀成像的重要方法之一,因其逆问题求解时的病态性导致重构效果偏差较大,为改善其成像质量及准确度提出了一种TV-CGAN(total variation-conditional generative adversarial Network)算法以检测其腐蚀状态。首先,建立了接地网正问题模型求解出边界电压,再用全变差正则化算法(total variation, TV)进行逆问题求解,得出初步接地网电导率分布图像。然后,利用了条件生成对抗网络算法,将TV法得出的图像进行二次成像,其生成器为引入卷积注意力模块的U-Net结构,判别器为PatchGAN卷积结构。将方法应用于接地网腐蚀状态检测中,重建后图像结构相似度结果为0.907 8,峰值信噪比值为16.935 6,其腐蚀位置判断准确率为96.35%,腐蚀程度判断误差为8.61%。结果表明该方法有效改善了逆问题求解时的病态性问题,提升了接地网腐蚀成像的质量,并提高了接地网腐蚀检测的准确度。