新型PIS-YOLO模型下的X射线注塑缺陷检测方法研究
DOI:
CSTR:
作者:
作者单位:

广东工业大学机电工程学院广州510006

作者简介:

通讯作者:

中图分类号:

TP391;TN41

基金项目:

国家自然科学基金(61705045)、2023年佛山市促进高校科技成果服务产业发展扶持项目(2023DZXX02)资助、校企联合项目(25HK0104,24HK0610,21HK0095)资助


Research on improved automatic defect detection method of X-ray injection parts under PIS-YOLO model
Author:
Affiliation:

School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高深度学习在X射线注塑工件缺陷检测中的准确性,实现更高精度的无损检测,提出了一种改进的YOLOv8-seg注塑件内部缺陷实例分割模型PIS-YOLO。首先为了减少参数量并提高特征融合能力,在主干网络中设计了一个多尺度特征融合与通道数减小的HG-Net模块,取代传统C2f模块;进一步引入倒置残差移动块融合高效多尺度注意力(iRMB_EMA)模块增强了深层传递,经由简化冗余连接的路径聚合网络-特征金字塔网络(PAN-FPN)完成特征融合。同时增加一个额外的输出分割检测头捕捉细小缺陷,提高了模型对小目标缺陷及缺陷边缘的精确识别。在注塑工业零件自制数据集上,主干网络部分提出的HG-Net模块对比C2f模块实现了同架构下计算量减小22.03%,在此基础上,结合iRMB_EMA注意力融合模块与额外输出检测头设计的模型整体的准确率相较于基准模型分别提升了2.9%和5.7%,且模型更轻量,计算复杂度更低。

    Abstract:

    To improve the accuracy of deep learning in X-ray injection molding workpiece defect detection and realize higher precision nondestructive testing, an improved YOLOv8-seg internal defect segmentation model PIS-YOLO was proposed in this paper. Firstly, to reduce the number of parameters and improve the feature fusion capability, a multi-scale feature fusion and channel number reduction HG-Net module is designed in the backbone network to replace the traditional C2f module. The iRMB_EMA attentional fusion module is further introduced to enhance the deep transmission, and the feature fusion is completed by PAN-FPN with simplified redundant connections. Meanwhile, an additional output segmentation detection head is added to capture small defects, which improves the model’s accurate recognition of small target defects and defect edges. On the self-made data set of injection molding industrial parts, HG-Net module proposed in the backbone network section achieves a 22.03% reduction in computation under the same architecture compared with C2f module. On this basis, the overall precision of the model combined with the iRMB_EMA attention fusion module and additional output detection head is improved by 2.9% and 5.7%, respectively, compared with the benchmark model, and the model is lighter and less complex.

    参考文献
    相似文献
    引证文献
引用本文

林子涵,张巧芬,王桂棠.新型PIS-YOLO模型下的X射线注塑缺陷检测方法研究[J].电子测量与仪器学报,2025,39(8):136-144

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-20
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
关于防范虚假编辑部邮件的郑重公告