CCM-YOLO: 一种改进的电路板密集区域元件检测方法
DOI:
CSTR:
作者:
作者单位:

1.长江大学电子信息与电气工程学院 荆州434023;2.中南大学计算机学院长沙410083

作者简介:

通讯作者:

中图分类号:

TN609

基金项目:

国家自然科学基金(62272485,62373372)项目资助


CCM-YOLO: An improved component detection method for dense regions of circuit boards
Author:
Affiliation:

1.School of Electronic Information and Electrical Engineering, Yangtze University, Jingzhou 434023, China; 2.School of Computer Science, Central South University, Changsha 410083, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    以YOLOv5为基准模型,针对电子元件在电路板上检测容易出现漏检、精度较低的问题。通过使用卷积块注意力模块(convolutional block attention module, CBAM)在进行特征提取过程中提升检测精度,改进边界回归损失函数的方法来改善模型在检测中出现的漏检问题。首先,利用卷积层提取元件的特征信息;其次,在路径聚合网络(path aggregation network, PANet)中引入了CBAM模块,既丰富了元件特征信息,又改善了模型精度较低的问题;最后,通过多尺度预测和自适应的锚框来实现对不同尺度元件的准确检测。实验结果表明,改进后的CCM-YOLO算法在自制的数据集上的均值平均精度(mean average precision, mAP)值达到96.8%,它的漏检率达到4.5%,相较于YOLOv5网络均值平均精度的88.8%,提高了8.3%的数值,在漏检率上由原基准模型的13.7%降低了9.2%。因此,该算法有效提高了检测精度,并显著减少了漏检,为元件检测提供了一种有效的检测方案。

    Abstract:

    In this paper, YOLOv5 is used as a benchmark model to address the problem of easy leakage and low accuracy of electronic components detection on circuit boards. The leakage problem of the model in detection is improved by using the convolutional block attention module (CBAM) to enhance the detection accuracy in the process of feature extraction and improving the boundary regression loss function. Firstly, the feature information of components is extracted using convolutional layers. Secondly, the CBAM module is introduced into the path aggregation network (PANet), which enriches the feature information of components and improves the problem of lower accuracy of the model. Finally, accurate detection of components of different scales is achieved by multi-scale prediction and adaptive anchor frames. The experimental results show that the improved CCM-YOLO algorithm achieves a mean average precision (mAP) value of 96.8% on the homemade dataset, and it achieves a leakage detection rate of 4.5%, which is an improvement of 8.3% value compared to the 88.8% of the mean average precision of the YOLOv5 network, and the leakage detection rate is reduced from 13.7% of the original baseline model is reduced by 9.2%. Therefore, the algorithm in this paper effectively improves the detection accuracy and significantly reduces the leakage detection, providing an effective detection scheme for component detection.

    参考文献
    相似文献
    引证文献
引用本文

吴必胜,高康松,陈松,徐浩飞,谢凯,贺建飚. CCM-YOLO: 一种改进的电路板密集区域元件检测方法[J].电子测量与仪器学报,2025,39(7):171-179

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-10-21
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
关于防范虚假编辑部邮件的郑重公告