级联反正切LMS自适应时延估计与应用
DOI:
CSTR:
作者:
作者单位:

重庆邮电大学工业物联网与网络化控制教育部重点实验室重庆400065

作者简介:

通讯作者:

中图分类号:

TH911.7;TH86

基金项目:

重庆市自然科学基金创新发展联合基金(CSTB2024NSCQ-LZX0035)、重庆市教委科学技术研究项目(KJZD-M202300605)、新重庆青年创新人才计划(CSTB2024NSCQ-QCXMX0053)、重庆市技术创新与应用发展重点项目 (CSTB2024TIAD-KPX0073, CSTB2024TIAD-KPX0101, CSTB2024TIAD-KPX0027)、南宁市邕江计划青年人才项目(RC20230107)、重庆市科研院所绩效引导专项(CSTB2023JXJL-YFX0013)资助


Adaptive delay estimation and application of cascaded arctangent LMS
Author:
Affiliation:

Key Laboratory of Industrial Internet of Things & Networked Control, Ministry of Education, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对管道泄漏定位中由于检测信号信噪比低并存在各种噪声干扰导致时延估计误差大的问题,提出一种级联反正切LMS自适应时延估计方法。首先,将反正切函数引入LMS自适应滤波器,增强滤波器在非高斯噪声下的鲁棒性,然后将两路泄漏信号输入第1级自适应滤波器进行滤波处理,抑制相关高斯噪声,再将第1级的滤波器的两路输出信号作为第2级滤波器的输入信号和期望信号,进一步滤除噪声,最后通过分析第2级滤波器的权系数曲线得出时延估计结果。在仿真中,在相关高斯噪声和3种不同分布的非高斯噪声干扰下,与互相关法、反正切LMS法和级联的LMS法相比,该方法的噪声抑制效果最好,信号相关峰最突出,当信噪比逐步下降时,该方法能在更低的信噪比下获得较好的时延估计精度。最后通过实际管道泄漏定位实验进一步验证了该方法的有效性和实用性,在噪声干扰下该方法能准确地找到泄漏点的位置,平均相对定位误差为2.31%,标准差为2.08%。

    Abstract:

    To address the issue of significant time delay estimation errors in pipeline leakage localization, which stem from the low signal-to-noise ratio (SNR) of detection signals and the existence of diverse noise interferences, a cascaded arctangent least mean square (LMS) adaptive time delay estimation method is proposed. First, the arctangent function is incorporated into the LMS adaptive filter to improve the filter’s robustness against non-Gaussian noise. Next, two channels of leakage signals are fed into the first stage adaptive filter to suppress correlated Gaussian noise. Subsequently, the two output signals from the first stage filter serve as the input and desired signals for the second stage filter to further eliminate noise. Finally, the time delay estimation is obtained by analyzing the weight coefficient curve of the second stage filter. In the simulation, under the influence of correlated Gaussian noise and non-Gaussian noise with three distinct distributions, when compared with the cross-correlation method, the arctangent LMS method, and the cascaded LMS method, the proposed method exhibits the optimal noise suppression performance, and the signal correlation peak is the most pronounced. As the SNR gradually declines, this method can attain superior time delay estimation accuracy at a lower SNR. Finally, the effectiveness and practicality of the proposed method are further validated through an actual pipeline leakage location experiment. Under the influence of noise, the method can precisely locate the leakage point, with an average relative location error of 2.31% and a standard deviation of 2.08%.

    参考文献
    相似文献
    引证文献
引用本文

李帅永,符强,何仲斐,沈沛.级联反正切LMS自适应时延估计与应用[J].电子测量与仪器学报,2025,39(6):221-230

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-16
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
关于防范虚假编辑部邮件的郑重公告