一种融合算法的多机器人路径规划
DOI:
CSTR:
作者:
作者单位:

1.天津工业大学航空航天学院天津300387;2.天津工业大学控制科学与工程学院天津300387

作者简介:

通讯作者:

中图分类号:

TN959.71;TP242.6;TP249

基金项目:

天津市自然科学基金重点项目(19JCZDJC32300)、东北大学航空动力装备振动及控制教育部重点实验室开放课题(VCAME201901)项目资助


Path planning for Multi-Robots based on a fusion algorithm
Author:
Affiliation:

1.School of Aeronautics and Astronautics, Tiangong University, Tianjin 300387, China; 2.School of Electrical Engineering and Automation, Tiangong University, Tianjin 300387, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出一种改进的快速随机树法(improved rapidly-exploring random tree,IRRT)与预测型的改进人工势场法(predicted-improved artificial potential field,P-IAPF)相融合的多机器人路径规划方法,以实现多机器人系统在复杂环境中的有效避障。首先,针对快速随机树(RRT)算法存在收敛速度慢与搜索范围具有随机性的缺点,采用目标偏向策略引导随机采样点的生成,同时将改进的人工势场法加入到双向的随机搜索树中,以快速找到全局路径。其次,针对传统的人工势场(APF)算法易陷入局部最小值且路径规划效率低问题,提出多虚拟关键点的预测型APF算法,采用道格拉斯-普克(Douglas Peucker,DP)算法寻找所规划出全局路径中的子关键点序列,通过切换关键点使多机器人来逃离局部最小值,以提高多机器人路径规划效率与平滑性。最后,通过对具有U型障碍物以及长矩形障碍物的复杂环境进行仿真实验,验证了提出的改进算法的安全性与有效性,同时具有路径规划效率高、避免多机器人碰撞等优点。

    Abstract:

    A method is proposed for multi-robot path planning in complex environments, employing an improved rapidly-exploring random tree (IRRT) algorithm and predicted-improved artificial potential field (P-IAPF) algorithm to achieve obstacle avoidance in multi-robot systems. Firstly, in view of the shortcomings of slow convergence speed and random search range of RRT algorithm, the target-biased strategy is used to guide the generation of random sampling points, simultaneously, the improved artificial potential field method is integrated into the bidirectional random search tree to rapidly identify the global path. Secondly, in response to the problem of traditional APF algorithm being prone to getting stuck in local minima and having low path planning efficiency, a predicted APF algorithm with multiple virtual keypoints is proposed, the Douglas Peucker (DP) algorithm is used to find the sequence of sub keypoints in the planned global path, and the multi robot system switches keypoints to escape from local minima, thereby enhancing both the efficiency and smoothness of multi-robot path planning. Ultimately, to confirm the effectiveness of the proposed algorithm, simulation experiments in complex environments with U-shaped and long rectangular obstacles are carried out, and it has the advantages of high path planning efficiency and avoiding multi-robot collision.

    参考文献
    相似文献
    引证文献
引用本文

姚明辉,李梦涵,牛燕,吴启亮,王聪.一种融合算法的多机器人路径规划[J].电子测量与仪器学报,2025,39(9):55-64

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-09
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
关于防范虚假编辑部邮件的郑重公告