基于PSO-SVR的涡流无损检测MAPoD和灵敏度分析的研究
DOI:
CSTR:
作者:
作者单位:

1.南京邮电大学电子与光学工程学院、柔性电子(未来技术)学院南京210046; 2.南京邮电大学通信与信息工程学院南京210046

作者简介:

通讯作者:

中图分类号:

TM93

基金项目:

国家自然科学基金面上项目(62071245)资助


Model-assisted probability of detection and sensitivity analysis of eddy current nondestructive testing system based on PSO-SVR
Author:
Affiliation:

1.School of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology),Nanjing University of Posts and Telecommunications,Nanjing 210046, China;2.School of Communications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210046, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    模型辅助检测概率(model-assisted probability of detection, MAPoD)和灵敏度分析对于量化涡流无损检测(eddy current nondestructive testing, ECNDT)系统的检测能力非常重要。由于不确定性在涡流无损检测的MAPoD和SA问题中的传播,传统基于实验方法和物理仿真模型对该问题的分析需要耗费大量的时间和人力成本,为了降低这些成本,提出基于粒子群算法(particle swarm optimization, PSO)的支持向量回归(support vector regression, SVR)模型取代传统的实验方法以及物理仿真模型,对涡流无损检测模型的响应进行预测,从而加速MAPoD和SA问题的分析。此外,创新性地将网格搜索、随机搜索、模拟退火算法和PSO等优化算法与SVR相结合,研究不同的优化算法对SVR的关键参数优化的精度和效率,验证PSO相较于其他优化算法的性能优势。最后,将PSO-SVR模型应用于ECNDT算例中,对表面裂缝长度的不确定性进行MAPoD和SA的分析。结果表明,所提算法在保证求解精度的同时,加速了涡流无损检测系统的MAPoD和SA问题的研究,并减少了计算开销。在计算量方面,对这两个问题的求解,平均分别仅需纯物理模型计算量的3.5%和0.06%。

    Abstract:

    Model-assisted probability of detection (MAPoD) and sensitivity analysis are important to quantify the detection capabilities of eddy current nondestructive testing (ECNDT) systems. Due to the propagation of uncertainties in the MAPoD and SA problems of eddy current NDT, the traditional methods which are based on experiment and physical simulation models require a lot of time and labor costs. To reduce these costs, in this paper, the particle swarm optimization (PSO) algorithm optimized support vector regression (SVR) model is proposed to replace the traditional experiments and physical simulation models to predict the response of eddy current NDT models, thereby accelerating the analysis of MAPoD and SA problems. In addition, to the novelty, this paper combines the hyperparameter optimization algorithms such as grid search, random search, simulated annealing algorithm and PSO with SVR to test the accuracy and efficiency of them for the optimization of key parameters, and verify the advantages of PSO-SVR over other optimization algorithms based SVR. Finally, the PSO-SVR model is applied to the ECNDT problem, and the uncertainties in length of the surface slot is studied in MAPoD and SA analysis. The results show that the proposed method not only ensures the accuracy, but also accelerates the study for the MAPoD and SA analysis of eddy current NDT systems. It also reduces the computational costs, which accounts for 3.5% and 0.06% of those of the pure physical model in average.

    参考文献
    相似文献
    引证文献
引用本文

包扬,陈欣茹,李筱轩,谭开欣,宛汀.基于PSO-SVR的涡流无损检测MAPoD和灵敏度分析的研究[J].电子测量与仪器学报,2025,39(6):19-29

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-16
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
关于防范虚假编辑部邮件的郑重公告