基于多尺度可变形图卷积的双人交互行为识别
DOI:
CSTR:
作者:
作者单位:

1.辽宁石油化工大学信息与控制工程学院抚顺113001;2.沈阳航空航天大学自动化学院沈阳110136

作者简介:

通讯作者:

中图分类号:

TP18; TP391.41

基金项目:

辽宁省人工智能领域科技创新项目(应用基础研究计划项目)(2023JH26/10300013)资助


Multi-scale deformable graph convolutional networks for two person interactive action recognition
Author:
Affiliation:

1.School of Information and Control Engineering, Liaoning Petrochemical University, Fushun 113001, China; 2.School of Automation, Shenyang Aerospace University, Shenyang 110136, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于骨架序列数据的双人交互行为识别具有广阔的应用前景,针对目前识别模型中存在双人交互特征表示不充分、动作类内特征表示冗余等问题,提出了一种基于多尺度可变形图卷积网络(multi-scale deformable graph convolutional network, MD-GCN)的双人交互行为识别方法。首先,构建双人交互超图,包括双人超图以及双人交互关系矩阵。与传统图不同,该超图能够更好地表达两人之间的交互关系,充分捕捉双人之间的交互特征。其次,将3流输入分支分别进行数据预处理和特征提取,然后将这些特征信息融合后送入以多尺度可变形图卷积网络为主的主分支中,最后进行动作分类。该网络能够多模态地学习可变形的采样位置,捕捉具有显著交互特征的关键信息,有效避免了特征冗余以及信息丢失。所提出的MD-GCN,在NTU RGB+D 60和NTU RGB+D 120数据集中的26类交互动作的识别任务中,准确率最高达到98.41%,有效地解决了双人交互行为识别中特征表示的挑战。实验结果表明,该方法在保持识别准确率的同时,显著减小了模型运算成本,模型推理性能达到了良好的平衡,具有较高的应用价值。

    Abstract:

    Two-person interaction action recognition based on skeleton sequence data has broad application prospects. To address the issues of insufficient interaction feature representation and redundant intra-class features in current recognition models, we propose a multi-scale deformable graph convolutional network (MD-GCN) for recognizing two-person interaction actions. First, we construct a two-person interaction hypergraph, including a person pair hypergraph and an interaction relationship matrix. Unlike traditional graphs, this hypergraph better captures the interaction between the two people, enabling a more comprehensive representation of the interaction features. Next, three input branches perform data preprocessing and feature extraction, and then the extracted features are fused and fed into the main branch, which is based on the multi-scale deformable graph convolutional network for action classification. This network learns deformable sampling positions in a multi-modal manner, effectively capturing key interaction features while avoiding feature redundancy and information loss. The proposed MD-GCN achieves a recognition accuracy of up to 98.41% on the 26 interaction action classes from the NTU RGB+D 60 and NTU RGB+D 120 datasets. This approach effectively addresses the challenges of feature representation in two-person interaction action recognition. Experimental results show that the method not only maintains high recognition accuracy but also significantly reduces the computational cost, achieving a good balance between inference performance and accuracy, making it highly valuable for practical applications.

    参考文献
    相似文献
    引证文献
引用本文

王丽,曹江涛,谢帅,姬晓飞.基于多尺度可变形图卷积的双人交互行为识别[J].电子测量与仪器学报,2025,39(10):61-69

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-05
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
关于防范虚假编辑部邮件的郑重公告