自主泊车场景下的激光雷达和IMU紧耦合的建图与定位方法
DOI:
CSTR:
作者:
作者单位:

上海工程技术大学机械与汽车工程学院上海201620

作者简介:

通讯作者:

中图分类号:

TN958. 98

基金项目:


Tightly coupled algorithm for the LiDAR and IMU in the context of autonomous parking vehicle
Author:
Affiliation:

School of Mechanical and Automotive Engineering,Shanghai University of Engineering Science, Shanghai 201620, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对在自主泊车环境中,仅使用激光雷达传感器,建图和定位精度受限的情况下,提出了一种基于惯性测量单元(inertial measurement unit,IMU)与激光雷达紧耦合的车辆自主泊车场景下的建图定位方法I-LOAM。首先,在前端对点云数据进行IMU预积分、点云预处理,去除地面点云,降低点云规模,保证激光里程计的效率。其次,提出一种基于初始配准算法(sample consensus initial alignment,SAC-IA)粗处理和优化后的迭代最近点算法(iterative closest point,ICP)精配准的S-ICP算法,与IMU和LiDAR紧耦合的定位算法互为补充,为自主泊车系统提供更为灵活和精准的建图定位方案。然后,在后端融合IMU信息、激光里程计和回环检测信息完成地图构建。与LeGO-LOAM算法相比,本文所提算法的均方根误差在室外、室内和直道3种场景中分别降低了45%、3%和6%,具有更好的精度和鲁棒性,为车辆在自主泊车环境下的建图与定位任务提供精准可靠的解决方案。

    Abstract:

    Aiming at the autonomous parking environment in which the map building and localization accuracy are limited by using only LIDAR sensors, a map building and localization method I-LOAM based on the inertial measurement unit (IMU) tightly coupled with LIDAR is proposed for autonomous vehicle parking scenarios.Firstly, IMU pre-integration of the point cloud data is performed at the front-end, point cloud preprocessing to remove the ground point cloud and reduce the point cloud scale to ensure the efficiency of laser odometry. Secondly, an S-ICP algorithm based on sample consensus initial alignment (SAC-IA) coarse processing and optimized iterative closest point (ICP) fine alignment is proposed, which complements the tightly coupled positioning algorithm with IMU and LiDAR to provide the best solution for autonomous parking. The S-ICP algorithm is complementary to the tightly coupled IMU and LiDAR localization algorithm, providing a more flexible and accurate map building and localization solution for the autonomous parking system. Then, the map is constructed by fusing IMU information, laser odometry and loopback detection information at the back-end. Compared with the LeGO-LOAM algorithm, the proposed algorithm’s rms error is reduced by 45%, 3% and 6% in outdoor, indoor and straight road scenarios, respectively, with better accuracy and robustness, which provides an accurate and reliable solution for map building and localization tasks in autonomous parking environments.

    参考文献
    相似文献
    引证文献
引用本文

刘同龑,吴长水.自主泊车场景下的激光雷达和IMU紧耦合的建图与定位方法[J].电子测量与仪器学报,2025,39(5):95-102

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-04
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
关于防范虚假编辑部邮件的郑重公告