采用改进的单发多框检测器探测红外人体目标
DOI:
CSTR:
作者:
作者单位:

南昌航空大学无损检测教育部重点实验室南昌330063

作者简介:

通讯作者:

中图分类号:

TP391.41;TN219

基金项目:

国家自然科学基金(51865038)项目资助


Infrared human target detection by improved single shot mulitibox detector
Author:
Affiliation:

Key Laboratory of Nondestructive Testing (Ministry of Education), Nanchang Hangkong University, Nanchang 330063, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对单发多框检测器(single shot mulitibox detector,SSD)的目标检测模型计算复杂度较高的问题,以及处理小目标、遮挡等情况存在鲁棒性差的问题,提出了一种改进的SSD红外人体目标检测方法,以满足智能监控实时性强的要求。首先,将MobileNet V2作为基础特征提取网络,取代了传统SSD中的VGG16(visual geometry group network 16)骨干网络,通过深度可分离卷积降低计算量;然后,引入特征金字塔网络(feature pyramid network, FPN)结构,实现多尺度特征图像融合,增强浅层特征表征能力;最后,引入SE(squeeze-and-excitation)通道注意力机制,动态学习通道权重以聚焦关键特征,提高了模型对浅层特征的表征能力以及对主要通道信息的关注度。在自建IR-HD数据集上的实验表明,改进后的SSD模型检测精度提升了1.3%AP@0.5、14.3%AP@0.75,模型推理速度提高了3.835 fps。结论表明,该方法通过轻量化设计、特征融合与注意力机制协同优化,在保障检测精度的同时显著提升实时性,对红外小目标、遮挡场景具有强鲁棒性。

    Abstract:

    To address the issue of high computational complexity in the single shot multibox detector (SSD) model and its poor robustness in handling small targets and occlusions, an improved SSD-based infrared human target detection method is proposed to meet the real-time requirements of intelligent surveillance. First, MobileNet V2 is used as the backbone feature extraction network, replacing the traditional visual geometry group network 16(VGG16)network in SSD, which reduces computational cost through depthwise separable convolutions. Then, a feature pyramid network (FPN) structure is introduced to achieve multi-scale feature fusion, enhancing the representation ability of shallow features. Finally, the squeeze-and-excitation (SE) channel attention mechanism is incorporated to dynamically learn the channel weights, focusing on key features and improving the model’s attention to important channel information. Experimental results on the self-built IR-HD dataset show that the improved SSD model’s detection accuracy is increased by 1.3%@AP0.5 and 14.3%AP@0.75, while the model’s inference speed improves by 3.835 fps. The conclusion indicates that this method, through lightweight design, feature fusion, and attention mechanism collaboration, significantly enhances both detection accuracy and real-time performance, demonstrating strong robustness in infrared small target and occlusion scenarios.

    参考文献
    相似文献
    引证文献
引用本文

罗体华,袁丽华,朱笑,卢超.采用改进的单发多框检测器探测红外人体目标[J].电子测量与仪器学报,2025,39(11):196-202

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-02-03
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
关于防范虚假编辑部邮件的郑重公告