交点分类融合自适应卡尔曼滤波的UWB定位算法
DOI:
CSTR:
作者:
作者单位:

华东交通大学电气与自动化工程学院南昌330013

作者简介:

通讯作者:

中图分类号:

U284.2

基金项目:

国家自然科学基金委员会, 地区科学基金项目(62366014)资助


UWB localization algorithm for intersection classification fusion adaptive Kalman filtering
Author:
Affiliation:

School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对使用超宽带(ultrawideband,UWB)技术在室内定位中受到非视距影响,导致定位精度下降问题,提出基于交点分类求解出标签的位置坐标,再融合到协方差自适应卡尔曼滤波后得出最优标签位置坐标,降低定位误差。交点分类是以基站为圆心、标签到基站之间的距离为半径,构成一个基站圆,以基站圆与基站圆之间的交点个数进行分类,对不同个数的交点分别采用直线相交、加权圆、加权质心等方法,求解出标签的位置坐标,记为粗定坐标,通过引入残差对卡尔曼滤波中系统过程噪声参数和测量噪声参数调整优化,再利用二段式引入遗忘因子,更新协方差矩阵,标签的粗定坐标作为协方差自适应卡尔曼滤波算法中的输入值,进而得到标签的最优位置坐标。实验结果表明,最大定位误差为14.2 cm,平均误差为7.65 cm,总体误差的方差为2.47 cm,提升了超宽带在室内定位的精度和稳定性,能够满足室内定位的需求。

    Abstract:

    Ultra-wideband (UWB) technology applied in indoor localization is susceptible to non-line-of-sight, which will lead to a decrease in localization accuracy. To address this problem, a new UWB localization method is proposed. The coordinates of the labels are initially estimated using the intersection classification method. This approach is then combined with an adaptive covariance Kalman filter to optimize the estimated coordinates and ultimately reduce positioning errors. The intersection classification process involves defining circles with base stations as centers and the distances between the base stations and the tag as radii. The number of intersections between the base station circles is classified, and various methods such as line intersections, weighted circles, and weighted centroids are employed to calculate the tag′s initial position, referred to as the rough coordinates. To further refine the positioning, residuals are introduced to adjust the process noise and measurement noise parameters in the Kalman filter. Additionally, a two-stage forgetting factor is incorporated to update the covariance matrix. The rough coordinates serve as input to the adaptive covariance Kalman filter, which then produces the optimized tag coordinates. Experimental results demonstrate that method effectively reduces the maximum positioning error to 14.2 cm, with an average error of 7.65 cm and a total error variance of 2.47 cm. These improvements significantly enhance the accuracy and robustness of UWB-based indoor positioning systems, meeting the stringent demands of indoor localization applications.

    参考文献
    相似文献
    引证文献
引用本文

张永贤,陈晶旗,管风景.交点分类融合自适应卡尔曼滤波的UWB定位算法[J].电子测量与仪器学报,2025,39(5):51-58

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-04
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
关于防范虚假编辑部邮件的郑重公告