基于ECSMNet的风力发电机表面缺陷检测研究
DOI:
CSTR:
作者:
作者单位:

1.南京信息工程大学电子与信息工程学院南京210044;2.无锡学院电子信息工程学院无锡214105

作者简介:

通讯作者:

中图分类号:

TP391;TN20

基金项目:

国家自然科学基金(62071240,62106111)、江苏省研究生科研与实践创新计划项目(SJCX24_0448)、无锡市 “太湖之光”科技攻关(基础研究)项目(K20241047)资助


Research on surface defect detection of wind turbine based on ECSMNet
Author:
Affiliation:

1.School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044,China; 2.School of Electronic and Information Engineering, Wuxi University, Wuxi 214105,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对风力发电机表面缺陷检测中存在的背景环境复杂、小目标缺陷检测精度不够等问题,提出了一种高效的风力发电机表面缺陷检测方法。首先构建具有特征提取与融合能力的主干网络,并在残差部分引入改进的通道注意力,帮助网络更好地提取特征信息,其次,使用新一代卷积变形模块进行输出,使模型能够更好地捕捉输入数据中空间和时间的相关性,简化模型的同时提高检测速度。最后在模型下采样部分引入高效空间-深度信息转换模块,将输入特征图中的空间维度降维至通道维度,保留显著特征的同时减少细粒度信息丢失,进一步提高模型检测小目标的能力。实验结果表明,相较于YOLOv7网络,所提网络在图像环境较为复杂的数据集1上准确率提升了3.5%,召回率提升了2.3%,交并比(IoU)为0.5时平均精度提升3.1%,在图片质量较好的数据集2上准确率达到96%,召回率达到94%,IoU为0.5时平均精度达到96.7%。所提模型在解决误检漏检问题方面有明显的优势,并且具有较快的检测速度,更适合在实际检测环境中应用,有良好的工程应用前景。

    Abstract:

    Aiming at the problems of complex background environment and insufficient detection accuracy of small target defects in surface defect detection of wind turbines, an efficient surface defect detection method for wind turbines is proposed. Firstly, a backbone network with feature extraction and fusion capabilities is constructed, and an improved channel attention is introduced in the residual part to help the network better extract feature information. Secondly, a new generation of convolution deformation module is used for output, so that the model can better capture the correlation between space and time in the input data, simplify the model and improve the detection speed. Finally, an efficient spatial-depth information conversion module is introduced in the down-sampling part of the model to reduce the spatial dimension in the input feature map to the channel dimension, retain the salient features while reducing the loss of fine-grained information, and further improve the ability of the model to detect small targets.The experimental results show that compared with the YOLOv7 network, the accuracy of the proposed network is improved by 3.5%, the recall rate is improved by 2.3%, and the average accuracy is improved by 3.1% when the intersection over union is 0.5.In the data set 2 with better image quality, the accuracy rate reaches 96%, the recall rate reaches 94%, and the average accuracy reaches 96.7% when IoU is 0.5. The proposed model has obvious advantages in solving the problem of false detection and missed detection, and has faster detection speed. It is more suitable for application in the actual detection environment and has good engineering application prospects.

    参考文献
    相似文献
    引证文献
引用本文

姜永祺,单慧琳.基于ECSMNet的风力发电机表面缺陷检测研究[J].电子测量与仪器学报,2025,39(5):166-176

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-04
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
关于防范虚假编辑部邮件的郑重公告