融合注意力机制的室外场景视觉SLAM算法研究
DOI:
CSTR:
作者:
作者单位:

北京林业大学工学院林业装备与自动化国家林业和草原局重点实验室北京100083

作者简介:

通讯作者:

中图分类号:

TN911.73;TP391.41

基金项目:


Research on visual SLAM algorithm for outdoor scenes with integrated attention mechanism
Author:
Affiliation:

Key Laboratory of National Forestry and Grassland Administration for Forestry Equipment and Automation, School of Technology, Beijing Forestry University, Beijing 100083,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    室外场景中特征点丰富且具有多样的几何形状和尺度,但因光照变化明显、纹理重复性较高,导致传统的视觉同步定位与建图算法在进行场景的三维重建过程时,存在特征点提取与匹配精度低的问题。为了提升系统在复杂环境中的建图精度和鲁棒性,提出一种融合注意力机制的视觉同步定位与建图(SLAM)算法,对SLAM系统中的特征提取和匹配方式进行改进。首先,将通道空间融合的卷积注意力模块融合到SuperPoint网络编码器的卷积层中,以增强模型的特征提取和匹配能力;然后,将改进后的SuperPoint网络与ORB-SLAM2算法的后端相结合,实现在复杂场景中更准确的位姿估计和地图构建;最后,在KITTI数据集上进行验证。结果表明,融合通道空间卷积注意力模块的SuperPoint网络在保持特征点稳定性和描述子判别性的基础上,有效提升了图像间特征匹配的精度,所提出的SLAM算法与ORB-SLAM2算法相比,绝对轨迹误差减少了30.05%,相对位姿误差减少了14.49%,实验结果表明,方法在光照变化明显和纹理重复性高的室外环境中具有更强的鲁棒性和稳定性,有效地提升了SLAM系统在室外复杂环境中的建图精度。

    Abstract:

    Outdoor scenes are rich in feature points with diverse geometric shapes and scales; however, significant illumination variations and high texture repetitiveness often lead to low feature extraction and matching accuracy in conventional visual simultaneous localization and mapping (SLAM) algorithms during 3D reconstruction. To improve mapping accuracy and robustness in complex environments, this paper proposes a visual SLAM algorithm integrated with an attention mechanism, aiming to enhance the feature extraction and matching strategies within SLAM systems. Specifically, a channel-spatial convolutional attention module is embedded into the convolutional layers of the SuperPoint encoder to strengthen the model’s feature detection and matching capabilities. The improved SuperPoint network is then integrated with the backend of the ORB-SLAM2 algorithm, enabling more accurate pose estimation and map construction in complex scenarios. The proposed approach is validated on the KITTI dataset. Experimental results demonstrate that the SuperPoint network integrated with the channel-spatial convolutional attention module significantly improves feature matching accuracy between images while maintaining the stability of keypoints and the discriminability of descriptors. Compared with the original ORB-SLAM2 algorithm, the proposed method achieves a 30.05% reduction in absolute trajectory error (ATE) and a 14.49% reduction in relative pose error (RPE). These results confirm that the proposed SLAM algorithm exhibits stronger robustness and stability in outdoor environments characterized by significant illumination changes and repetitive textures, effectively enhancing the mapping accuracy of SLAM systems in complex outdoor scenes.

    参考文献
    相似文献
    引证文献
引用本文

马金睿,梁浩,林剑辉.融合注意力机制的室外场景视觉SLAM算法研究[J].电子测量与仪器学报,2025,39(10):220-231

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-05
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
关于防范虚假编辑部邮件的郑重公告