基于Mahony与自适CKF的多传感器姿态解算算法
DOI:
CSTR:
作者:
作者单位:

河南理工大学

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金 (41672363)


Multi-Sensor Attitude Estimation Algorithm Based on Mahony Filter and Adaptive CKF
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对低成本惯性导航器件的姿态解算精度低、磁力计易受磁干扰影响的问题,本文提出了一种基于Mahony互补滤波与自适应容积卡尔曼滤波(Mahony Complementary Filter and Adaptive Cubature Kalman Filter,MACKF)的多传感器融合算法。首先通过Mahony滤波融合磁力计和加速度计数据,实时修正陀螺仪输出,并通过关键帧机制主动补偿受磁干扰的数据。随后,修正后的姿态四元数用于容积卡尔曼滤波,利用自适应调整量测噪声协方差矩阵来减小磁干扰影响。车载实验结果表明,该算法显著提高了姿态解算的精度,相比传统方法,横滚角、俯仰角和航向角的精度分别提升了45.3%、50.2%和32.8%。因此,所提算法在抑制陀螺仪漂移和抵抗磁干扰方面表现出良好的性能。

    Abstract:

    To address the issues of low attitude estimation accuracy and magnetic interference affecting low-cost inertial navigation devices, this paper proposes a multi-sensor fusion algorithm based on Mahony Complementary Filter and Adaptive Cubature Kalman Filter (MACKF). First, the Mahony filter is used to fuse magnetometer and accelerometer data to correct gyroscope output in real-time and actively compensate for magnetically disturbed data through a keyframe mechanism. The corrected attitude quaternion is then used in the Cubature Kalman Filter, with adaptive adjustment of the measurement noise covariance matrix to reduce magnetic interference. Vehicle-mounted experimental results show that this algorithm significantly improves attitude estimation accuracy, with roll, pitch, and yaw angle precision improved by 45.3%, 50.2%, and 32.8%, respectively, compared to traditional methods. Therefore, the proposed algorithm demonstrates excellent performance in mitigating gyroscope drift and resisting magnetic interference.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-03
  • 最后修改日期:2024-12-31
  • 录用日期:2025-01-07
  • 在线发布日期:
  • 出版日期:
文章二维码