放射源密度检测低温计数率衰减补偿方法*
作者单位:

兰州交通大学

基金项目:

1.兰州市科技发展计划项目(2023-3-104) 2.甘肃省高校产业支撑计划项目(2023CYZC-40)


Low temperature counting rate attenuation compensation method for radiation source density detection
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • | | | |
  • 文章评论
    摘要:

    放射源密度检测系统是一种利用放射性同位素进行物质密度测量的仪器。在石油化工、矿业医疗都有应用,原理是放射源信号利用其本身优秀的穿透性,穿过装有物质的密闭管道,被闪烁体和光电倍增管检测到并转换为电压脉冲信号。然而,化工现场复杂环境会影响系统的工作性能,最明显直观的就是低温影响。相对于系统在标定温度下工作性能,系统在低温环境中输出脉冲计数率发生明显衰减,相对于标定温度20℃时单位时间系统采集脉冲计数,-30℃时最多时衰减能达到标定温度的25%,严重影响测量密度准确性,使系统输出变得不可靠,引发现场工作人员误操作。因此,对系统在低温下的输出进行补偿势在必行,通常根据系统中受温度影响期间来进行相应补偿,如高压模块在低温下输出不稳定,则进行高压补偿,对光电倍增管低温下倍增减少情况进行阈值补偿等,这些补偿方式有效但效果有限,本文引入基于概率主成分回归模型(PPCR)的温度补偿方法,在不对硬件做改动的情况下,依据收集到的脉冲衰减数据,构建PPCR模型,并进行补偿。测试结果表明,低温环境中该补偿方法能够将计数率损失能够控制在3%以下,提升了系统在低温环境下的密度检测精度。

    Abstract:

    Objective The radioactive source density detection system is an instrument that uses radioactive isotopes to measure material density. It has applications in petrochemical, mining, and medical industries. The principle is that the radiation source signal utilizes its excellent penetrability to pass through a sealed pipeline containing substances, be detected by scintillators and photomultiplier tubes, and converted into voltage pulse signals. However, the complex environment of chemical sites can affect the performance of the system, with the most obvious and intuitive being the impact of low temperatures. Compared to the performance of the system at calibration temperature, the output pulse count rate of the system significantly decreases in low-temperature environments, reaching up to 30% at most, resulting in a decrease in measurement density accuracy and even causing misoperation by on-site personnel, making the system output unreliable.This article introduces a temperature compensation method based on probabilistic principal component regression model, analyzes the changes of key detection devices such as scintillators and photomultiplier tubes in the system at low temperatures, collects attenuation data, and constructs a PPCR model without hardware modifications. The maximum expected estimation algorithm (EM) is used to estimate the attenuation parameter set of the model and compensate for it. The test results show that this compensation method can control the count rate loss below 3% in low-temperature environments, improving the density detection accuracy of the system in low-temperature environments.

    参考文献
    [1] 刘蕴韬,安世忠,梁积新.核技术应用现状及发展趋势[J].科技导报,2022,40(11):88-97. Liu Yuntao, An Shizhong, Liang Jixin. Current Status and Development Trends of Nuclear Technology Applications [J]. Science and Technology Review, 2022, 40 (11): 88-97
    [2] 放射性同位素密度计[J].有色金属(冶炼部分),1973(02):40-44. Radioisotope Density Meter [J]. Nonferrous Metals (Smelting Section), 1973 (02): 40-44
    [3] Peyvandi, R. G., et al. "Influence of temperature on the performance of gamma densitometer." Instruments and Experimental Techniques 57 (2014): 667-670.
    [4] Mau?ec, M., and I. Denijs. "Development and calibration of a γ-ray density-meter for sediment-like materials."Applied Radiation and Isotopes 67.10 (2009): 1829-1836.
    [5] Wang, Chongjie, et al. "Inversion Correction Method for NaI (Tl) Gamma Spectra on Arbitrary Energy Scale Based on the Function Theory of Random Variables." Instruments and Experimental Techniques 65.2 (2022): 362-369.
    [6] Lee, Hye Young, et al. "Scintillation characteristics of a NaI (Tl) crystal at low-temperature with silicon photomultiplier." Journal of Instrumentation 17.02 (2022): P02027.
    [7] 杨 锋,闵永智,孙天放.图像式路基沉降监测系统的温度补偿方法[J].仪器仪表学报,2022,43(8):18-25 Yang Feng, Min Yongzhi, Sun Tianfang. Temperature compensation method for image-based roadbed settlement monitoring system [J]. Journal of Instrumentation, 2022, 43 (8): 18-25
    [8] 朱志峰,张海宁.压力变送器非线性校准及温度补偿方法的研究[J].电子测量技术,2021,44(21):71-76. Zhu Zhifeng, Zhang Haining. Research on Nonlinear Calibration and Temperature Compensation Methods of Pressure Transmitters [J]. Electronic Measurement Technology, 2021, 44 (21): 71-76
    [9] Kapri, Rashtrapriya Kumar, et al. "Optimization of control parameters of PMT-based photon counting system." MAPAN 35 (2020): 177-182.
    [10] 王兰雨,陈红梅,张昊哲.适用于霍尔电流传感器的温漂补偿电路设计[J].电子测量与仪器学报,2023,37(09):8-15. Wang Lanyu, Chen Hongmei, Zhang Haozhe. Design of Temperature Drift Compensation Circuit for Hall Current Sensor [J]. Journal of Electronic Measurement and Instrumentation, 2023, 37 (09): 8-15
    [11] 杜树标,乔杨,陶茂辉,等.αβ表面沾染检测仪温度补偿技术[J].兵工自动化,2017,36(12):31-33+38. Du Shubiao, Qiao Yang, Tao Maohui, et al. Temperature compensation technology for α - β surface contamination detector [J]. Ordnance Automation, 2017, 36 (12): 31-33+38
    [12] Luan, Xiaoli, et al. "Probabilistic PCR based near-infrared modeling with temperature compensation." ISA transactions 81 (2018): 46-51.
    [13] 刘康,武烘萱,易俊,等.单光子计数太赫兹雷达直接探测方法与性能研究[J/OL].雷达学报:1-13[2024-06-18]. Liu Kang, Wu Hongxuan, Yi Jun, et al. Research on Direct Detection Method and Performance of Single Photon Counting Terahertz Radar [J/OL]. Journal of Radar: 1-13 [2400-06-18]
    [14] Payne, Stephen A., et al. "Nonproportionality of scintillator detectors. III. Temperature dependence studies." IEEE Transactions on Nuclear Science 61.5 (2014): 2771-2777.
    [15] Lim, Ik-Chan, Geo Park, and Young-kil Kim. "Implementation of A9-Based Digital Portable Radiation Detector with the Algorithm of Temperature Compensation in Scintillator." Journal of the Korea Institute of Information and Communication Engineering 21.10 (2017): 1981-1989.
    [16] Wang, Bei, et al. "A probabilistic principal component analysis-based approach in process monitoring and fault diagnosis with application in wastewater treatment plant." Applied Soft Computing 82 (2019): 105527.
    [17] Zhou, Le, et al. "Probabilistic latent variable regression model for process-quality monitoring." Chemical Engineering Science 116 (2014): 296-305.
    [18] 马帜,罗尧治,万华平,YUN C B,沈雁彬,俞峰.基于概率主成分分析的结构健康监测数据修复方法研究[J].振动与冲击,2021,40(21):135-141+167. Ma Zhi, Luo Yaozhi, Wan Huaping, YUN CB, Shen Yanbin, Yu Feng. Research on Data Restoration Method for Structural Health Monitoring Based on Probabilistic Principal Component Analysis [J]. Vibration and Shock, 2021, 40 (21): 135-141+167
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:2
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-07-24
  • 最后修改日期:2024-12-20
  • 录用日期:2024-12-25
文章二维码