复杂干扰环境下相关证据推理的故障检测算法
DOI:
CSTR:
作者:
作者单位:

1.重庆邮电大学自动化学院;2.云南大学信息学院;3.河南省科学院应用物理研究所有限公司

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(62302429),云南省媒体融合重点实验室开放课题(220235203),河南省科技攻关项目(232102210056)


Fault detection algorithm based on evidential reasoning with dependent evidence under complex interference environment
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    现有基于证据理论的故障检测算法通常需假设证据具备独立性,但在实际工程中这一假设往往难以成立,尤其在数据源受到复杂环境干扰的情况下,可能导致理论分析与实际结果之间存在较大差异。针对上述问题,提出一种复杂干扰环境下相关证据推理的故障检测算法。首先,根据证据可靠度确定加权模型下的证据融合顺序,以降低复杂干扰造成融合结果的不确定性;然后,在证据融合阶段中考虑证据相关性问题,计算最大信息系数以评估证据间的关联程度;其次,根据证据依赖系数计算依赖折扣因子,并将其融入证据推理规则中;最后,考虑数据源的复杂干扰特性,借鉴统计学习的提升方法思想,设计双层证据决策机制计算最终的故障检测结果。通过航空电磁继电器的故障检测实验,验证了所提算法的可行性与有效性。与现有方法相比,所提算法的优势在于放宽了对证据独立性的要求,尤其适用于受噪声干扰较大的工程环境中。

    Abstract:

    Existing fault detection algorithms based on evidence theory typically assume that the evidence is independent. However, this assumption is often difficult to satisfy in practical engineering, especially when data sources are affected by complex interference environment, leading to significant discrepancies between theoretical analysis and actual results. In response to the above problems, a fault detection algorithm based on evidential reasoning with dependent evidence under complex interference environment is proposed. Initially, the evidence reliability is used to determine the evidence fusion sequence within a weighted model, reducing the uncertainty of fusion results caused by complex disturbances. Subsequently, considering the correlation of non-independent evidence in the evidence fusion stage, the maximum information coefficient is calculated to evaluate the degree of correlation between evidence. Furthermore, the dependence discounting factor is calculated based on the dependence coefficient of the evidence and incorporated into evidential reasoning rule. Lastly, considering the complex interference characteristics of data sources, a two-layer evidence decision-making mechanism inspired by boosting methods in statistical learning is designed to compute the final fault detection result. The feasibility and efficacy of the proposed algorithm are demonstrated through a fault detection experiment of aviation electromagnetic relays. Compared with existing methods, the advantage of the proposed algorithm is that it relaxes the requirement for independence of evidence, which is especially suitable for engineering environments that are subject to greater noise interference.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-17
  • 最后修改日期:2024-12-28
  • 录用日期:2025-01-06
  • 在线发布日期:
  • 出版日期:
文章二维码