复杂干扰环境下相关证据推理的故障检测算法
作者:
作者单位:

1.重庆邮电大学自动化学院;2.云南大学信息学院;3.河南省科学院应用物理研究所有限公司

基金项目:

国家自然科学基金项目(62302429),云南省媒体融合重点实验室开放课题(220235203),河南省科技攻关项目(232102210056)


Fault detection algorithm based on evidential reasoning with dependent evidence under complex interference environment
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • | | | |
  • 文章评论
    摘要:

    现有基于证据理论的故障检测算法通常需假设证据具备独立性,但在实际工程中这一假设往往难以成立,尤其在数据源受到复杂环境干扰的情况下,可能导致理论分析与实际结果之间存在较大差异。针对上述问题,提出一种复杂干扰环境下相关证据推理的故障检测算法。首先,根据证据可靠度确定加权模型下的证据融合顺序,以降低复杂干扰造成融合结果的不确定性;然后,在证据融合阶段中考虑证据相关性问题,计算最大信息系数以评估证据间的关联程度;其次,根据证据依赖系数计算依赖折扣因子,并将其融入证据推理规则中;最后,考虑数据源的复杂干扰特性,借鉴统计学习的提升方法思想,设计双层证据决策机制计算最终的故障检测结果。通过航空电磁继电器的故障检测实验,验证了所提算法的可行性与有效性。与现有方法相比,所提算法的优势在于放宽了对证据独立性的要求,尤其适用于受噪声干扰较大的工程环境中。

    Abstract:

    Existing fault detection algorithms based on evidence theory typically assume that the evidence is independent. However, this assumption is often difficult to satisfy in practical engineering, especially when data sources are affected by complex interference environment, leading to significant discrepancies between theoretical analysis and actual results. In response to the above problems, a fault detection algorithm based on evidential reasoning with dependent evidence under complex interference environment is proposed. Initially, the evidence reliability is used to determine the evidence fusion sequence within a weighted model, reducing the uncertainty of fusion results caused by complex disturbances. Subsequently, considering the correlation of non-independent evidence in the evidence fusion stage, the maximum information coefficient is calculated to evaluate the degree of correlation between evidence. Furthermore, the dependence discounting factor is calculated based on the dependence coefficient of the evidence and incorporated into evidential reasoning rule. Lastly, considering the complex interference characteristics of data sources, a two-layer evidence decision-making mechanism inspired by boosting methods in statistical learning is designed to compute the final fault detection result. The feasibility and efficacy of the proposed algorithm are demonstrated through a fault detection experiment of aviation electromagnetic relays. Compared with existing methods, the advantage of the proposed algorithm is that it relaxes the requirement for independence of evidence, which is especially suitable for engineering environments that are subject to greater noise interference.

    参考文献
    [1] NING P, ZHOU Z, CAO Y, et al. A concurrent fault diagnosis model via the evidential reasoning rule[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71(1): 1-16.
    [2] XU X, GUO H, ZHANG Z, et al. A cloud model-based interval-valued evidence fusion method and its application in fault diagnosis [J]. Information Sciences, 2024, 658(7): 1-20.
    [3] LIN G, LIANG J, QIAN Y. An information fusion approach by combining multigranulation rough sets and evidence theory[J]. Information Sciences, 2015, 314(25): 184-199.
    [4] FENG Z, YANG R, ZHOU Z, et al. Online fault diagnosis and tolerance based on multiexpert joint belief rule base for sensor failures of vehicles[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72(1): 1-13.
    [5] SHANG Q, LI H, DENG Y, et al. Compound credibility for conflicting evidence combination: an Autoencoder-K-Means approach[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(9): 5602-5610.
    [6] WANG J, ZHOU Z, HU C, et al. A fusion approach based on evidential reasoning rule considering the reliability of digital quantities[J]. Information Sciences, 2022, 612(31): 107-131.
    [7] XU X, FORDE M C, REN Y, et al. Multi-index probabilistic anomaly detection for large span bridges using bayesian estimation and evidential reasoning[J]. Structural Health Monitoring, 2023, 22(2): 948-965.
    [8] ZHANG P, ZHOU Z, FENG Z, et al. Inference and analysis on the evidential reasoning rule with time-lagged dependencies[J]. Engineering Applications of Artificial Intelligence, 2023, 126(15): 1-22.
    [9] 吴晓阳, 张森, 陈先中, 等. 高炉煤气流分布过程的多算法融合预测模型[J]. 控制理论与应用, 2020, 37(06): 1241-1252.WU Xiaoyang, ZHANG Sen, CHEN Xianzhong, et al. Multi-algorithm fusion prediction model for the blast furnace gas flow distribution process[J]. Control Theory and Technology, 2020, 37(6): 1241-1252.
    [10] 马文涛, 寇晓, 郭耀松, 等. 基于扩展KRSL无迹卡尔曼滤波的约束动态状态估计[J]. 电力系统自动化, 2023, 47(06): 185-196.MA Wentao, KOU Xiao, GUO Yaosong, et al. Constrained dynamic state estimation based on extended kernel risk sensitive loss unscented kalman filter[J]. Automation of Electric Power Systems, 2023, 47(6): 185-196.
    [11] 李岩, 滕云, 冷欧阳, 等. 数据驱动的输电线路在线监测装置可靠性评估[J]. 中国电机工程学报, 2018, 38(15): 4410-4419.LI Yan, TENG Yun, LENG Ouyang, et al. Reliability Evaluation of On-line Monitoring Device Over Transmission Line Based on Data Driven Concept[J]. Proceedings of the CSEE, 2018, 38(15): 4410-4419.
    [12] 李楠, 张云燕, 李言俊. 一种自旋稳定卫星姿态传感器数据异常的诊断方法[J]. 宇航学报, 2011, 32(06): 1327-1332.LI Nan, ZHANG Yunyan, LI Yanjun. A diagnosis algorithm for abnormal data of spin-stabilized satellite attitude Sensors[J]. Journal of Astronautics, 2011, 32(6): 1327-1332.
    [13] 刘伟旻, 王建林, 邱科鹏, 等. 基于DHSC的多模态间歇过程测量数据异常检测方法[J]. 化工学报, 2017, 68(11): 4201-4207.LIU Weimin, WANG Jianlin, QIU Kepeng, et al. Method for detecting abnormal data in multimode batch processes based on dynamic hypersphere structure change[J]. CIESC Journal, 2017, 68(11): 4201-4207.
    [14] 刘伟旻, 王建林, 邱科鹏, 等. 基于多证据融合决策的间歇过程测量数据异常检测方法[J]. 化工学报, 2017, 68(08): 3183-3189.LIU Weimin, WANG Jianlin, QIU Kepeng, et al. Multi-evidence fusion decision-making method for detecting abnormal data of batch processes[J]. CIESC Journal, 2017, 68(08): 3183-3189.
    [15] CATTANEO M E G V. Belief functions combination without the assumption of independence of the information sources[J]. International Journal of Approximate Reasoning, 2011, 52(3): 299-315.
    [16] NAKAMA T, RUSPINI E. Combining dependent evidential bodies that share common knowledge[J]. International Journal of Approximate Reasoning, 2014, 55(9): 2109-2125.
    [17] MAO S, HAN Y, DENG Y, et al. A hybrid DEMATEL-FRACTAL method of handling dependent evidences[J]. Engineering Applications of Artificial Intelligence, 2020, 91(5): 1-13.
    [18] 陈雪龙, 王亚丽. 考虑信息源相关性的多属性应急决策方法[J]. 系统工程理论与实践, 2018, 38(08): 2045-2056.CHEN Xuelong, WANG Yali. The method for multi-attribute emergency decision-making considering the interdependence between information sources[J]. Systems Engineering Theory Practice, 2018, 38(8): 2045-2056.
    [19] PAN L, GAO X, DENG Y. A distance of quantum mass function and its application in multi-source information fusion method based on discount coefficient[J]. Engineering Applications of Artificial Intelligence, 2022, 116(10): 1-11.
    [20] TANG S W, ZHOU Z J, HU C H, et al. Perturbation analysis of evidential reasoning rule[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(8): 4895-4910.
    [21] WANG J, ZHOU Z, HU C, et al. Performance evaluation of aerospace relay based on evidential reasoning rule with distributed referential points[J]. Measurement, 2021, 182(16): 1-18.
    [22] MA Z, ZHU J, CHEN Y. A probabilistic linguistic group decision-making method from a reliability perspective based on evidential reasoning[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(7): 2421-2435.
    [23] ZHAO F J, ZHOU Z J, HU C H, et al. A New Evidential Reasoning-Based Method for Online Safety Assessment of Complex Systems[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48(6): 954-966.
    [24] 蔡军,肖乔元,吴凡. 基于超程时间测量的电磁继电器故障检测[J]. 电子测量与仪器学报, 2023, 37(6): 93-100.CAI Jun, XIAO Qiaoyuan, WU Fan. Fault detection of electromagnetic relay based on super-path time measurement[J]. Journal of Electronic Measurement and Instrumentation, 2023, 37(6): 93-100.
    [25] 苏晓燕, 韩文花, 许培达, 等. 相关证据融合综述[J]. 系统工程与电子技术, 2016, 38(6): 1345-1351.SU Xiaoyan, HAN Wenhua, XU Peida, et al. Review of combining dependent evidence[J]. Systems Engineering and Electronics, 2016, 38(6): 1345-1351.
    [26] LIANG T, ZHANG Q, LIU X, et al. Time-frequency maximal information coefficient method and its application to functional corticomuscular coupling[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(11): 2515-2524.
    [27] 王淑娟, 余琼, 翟国富. 电磁继电器接触失效机理判别方法[J]. 电工技术学报, 2010, 25(08): 38-44.WANG Shujuan, YU Qiong, ZHAI Guofu. Discrimination Method of Contact Failure Mechanisms for Electromagnetic Apparatus[J]. Transactions of China Electrotechnical Society, 2010, 25(08):38-44.
    [28] 李文华, 桑海爽, 项石虎, 孙鑫亮. 基于可恢复冲击效应的继电器可靠性评估方法[J]. 仪器仪表学报, 2022, 43(11): 200-209.LI Wenhua, SANG Haishuang, XIANG Shihu, SUN Xinliang. Reliability evaluation method of relay based on recoverable shock effect[J]. Chinese Journal of Scientific Instrument, 2022, 43(11): 200-209.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:2
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-07-17
  • 最后修改日期:2024-12-28
  • 录用日期:2025-01-06
文章二维码