D2D辅助移动边缘计算下的任务卸载和资源分配研究
DOI:
CSTR:
作者:
作者单位:

1.江南大学物联网工程学院;2.海南大学信息与通信工程学院;3.北京邮电大学网络与交换技术全国重点实验室

作者简介:

通讯作者:

中图分类号:

TN92

基金项目:

国家自然科学基金(62361023),海南省自然科学基金(623MS022) ,海南省教育厅项目资助(Hnky2024ZD-3) ,海南大学高层次人才科研启动项目(KYQD(ZR)-22063),网络与交换技术全国重点实验室(北京邮电大学)开放课题资助项目(SKLNST-2023-1-13)


Joint Optimization of Task Offloading and Resource Allocation in D2D-assisted Mobile Edge Computing
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对移动边缘计算 (MEC) 环境下终端设备任务卸载时资源分配效率低的问题,提出一种基于终端直传通信(D2D)技术辅助MEC系统的多任务部分卸载方案。该方案基于块坐标下降法(BCD)实现任务卸载和资源分配策略的联合优化,借助动态定价策略激励服务型设备(SSDs)共享剩余可用计算资源,以最小化系统执行成本。首先利用重构-线性化技术(RLT)和凸优化理论优化计算资源分配和卸载比例划分,决定任务分配至本地计算、D2D卸载和边缘卸载时数据量;其次根据优化后卸载策略选择最优SSDs执行D2D卸载任务。仿真结果表明,与传统部分卸载方案、中继辅助卸载方案和协同计算卸载方案相比,所提卸载方案在不同设备数目下系统执行总成本分别减少27.62%、25.58%和19.98%,在不同最大容忍时延条件下系统执行总成本分别平均下降约43.35%、38.19%和36.79%及在不同任务数据大小下系统执行总成本分别平均下降约36.47%、30.60%和29.15%。进一步实验表明,与贪婪卸载方案相比,所提卸载方案在不同设备数目、最大容忍时延和任务数据量下分别平均优化7.59%、0.39%和3.10%系统执行成本,有效提高系统资源利用率并降低执行成本。

    Abstract:

    To address the problem of inefficient resource allocation during task offloading in mobile edge computing (MEC) environments for terminal devices, a multi-task partial offloading scheme is proposed that leverages device-to-device (D2D) communication technology to assist the MEC system. The scheme is based on the block coordinate descent (BCD) method to optimize the task offloading and resource allocation strategies jointly. Additionally, a dynamic pricing strategy is adopted to incentivize the service-oriented smart devices (SSDs) to share the remaining available computational resources, aiming to minimize the system-wide execution cost. Firstly, the reconfiguration linearization technique (RLT) and convex optimization theory are utilized to optimize the allocation of computational resources and the offloading ratios, determining the tasks to be allocated to local computing, D2D offloading and edge offloading. Secondly, the appropriate SSDs are selected to perform D2D offloading tasks based on the optimal offloading policy. Simulation results show that, compared with the traditional partial offloading scheme, relay-assisted offloading scheme, and cooperative computing offloading scheme, the proposed offloading scheme reduces the total cost of system execution by 27.62%, 25.58% and 19.98%, respectively, under different numbers of devices, and reduces the total cost of system execution by about 43.35%, 38.19% and 36.79%, respectively, under different conditions of the maximum tolerable delay. The average reduction in total system execution cost under different task data sizes is about 36.47%, 30.60%, and 29.15%, respectively. Further experiments indicate that, compared with the greedy offloading scheme, the proposed offloading scheme optimizes the system execution cost by an average of 7.59%, 0.39% and 3.10% for different numbers of devices, maximum tolerable delays and task data sizes, respectively. Therefore, this scheme effectively enhances the resource utilization while reducing the execution cost.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-17
  • 最后修改日期:2024-11-19
  • 录用日期:2024-11-25
  • 在线发布日期:
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
财务封账不开票通知