全局-局部特征融合的甲状腺细针穿刺活检全玻片图像轻量化样本级分类
DOI:
CSTR:
作者:
作者单位:

北京工业大学

作者简介:

通讯作者:

中图分类号:

基金项目:

北京市教育委员会科学研究计划(KZ202210005007)


Global-local feature fusion for lightweight sample-level classification of thyroid fine-needle aspiration biopsy whole-slide images
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    细针穿刺活检全玻片图像(fine-needle aspiration biopsy whole-slide image, FNAB-WSI)的细胞学检查对甲状腺乳头状癌或良性结节性增生的诊断至关重要。由于样本级FNAB-WSI具有上亿像素的超高分辨率,利用深度网络进行样本级别分类会消耗相当规模的计算资源。考虑到样本级FNAB-WSI兼具全局和细胞团局部细节特征,提出了一种全局-局部特征融合的轻量化样本级分类方法。首先利用轻量化GhostNet网络提取全局特征,通过设置卷积步长控制特征图谱尺寸,并用特征切片与融合获取局部特征;然后对全局和局部特征分别最大池化和降维,进而融合为全局-局部特征;最后全连接全局-局部特征,并通过 softmax 分类器达成甲状腺样本级良恶性分类。在自建的FNAB-WSI样本级数据集上,所提方法各项性能指标上均超越了其他轻量化方法,Precision、 Recall、Acc和AUC分别达到了最高的89.9%、91.2%、91.7%和92.5%,同时参数量方面具有可比性,为6.1M,展现出了良好的平衡性能。所提方法不仅提高了样本级分类的准确性,还通过减少参数量优化了模型的计算效率,有望为甲状腺癌的临床诊断提供了一种有效的辅助工具。

    Abstract:

    :Cytologic examination of thyroid fine-needle aspiration biopsy whole-slide image (FNAB-WSI) is crucial for the diagnosis of papillary thyroid carcinoma or benign nodular hyperplasia. Due to the ultra-high resolution in sample-level FNAB-WSI, sample-level classification using deep networks consumes computational resources of considerable scale. Given that the sample-level FNAB-WSI has both global and cell cluster local detail features, a lightweight sample-level FNAB-WSI classification method with global-local feature fusion is proposed. Firstly, the global features are extracted using lightweight GhostNet, the feature map size is controlled by setting the convolutional stride, and the local features are obtained by feature slicing and fusion. Then, the global and local features are fused into global-local features after max-pooling and dimensionality reduction, respectively. Finally, the global-local features are fully connected to classify the benign-malignant FNAB-WSI by the softmax classifier. On the self-build FNAB-WSI sample-level dataset, our method surpasses other lightweight methods in all performance indicators, with 89.9% precision, 91.2% recall, 91.7% Acc, and 92.5% AUC, respectively, while the number of parameters is comparable to 6.1M, demonstrating a tradeoff result. The proposed method not only improves the accuracy of sample-level classification, but also optimizes the computational efficiency of the model by reducing the number of parameters, providing an effective auxiliary tool for clinical diagnosis of thyroid cancer.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-17
  • 最后修改日期:2025-01-07
  • 录用日期:2025-01-14
  • 在线发布日期:
  • 出版日期:
文章二维码