摘要:针对输电线路中防震锤尺寸小,图像背景复杂,防震锤缺失难以检测的问题,提出一种轻量化YOLOv8-SPH的防震锤缺失检测模型。通过在YOLOv8n网络的颈部引入160×160和320×320的浅层尺度特征图,并在检测头中融入相应尺度的目标检测模块,提升了特征图之间的上下文信息融合能力,有效扩大了模型的感受野,使得模型能够捕捉到更多防震锤缺失的特征语义信息。还创新性地提出了多尺度高效特征提取模块(MultFaster),通过部分卷积、多级特征提取和残差连接机制,在保持防震锤特征检测精度的同时,减少网络的计算量和参数量。此外,在颈部网络中引入动态上采样算子,提高重建特征图的分辨率,提高了该模型对防震锤缺失检测的精度,同时,将原模型解耦式检测头更换为轻量化检测头,降低了模型计算的复杂度并提升检测效率。最后对改进后的网络进行基于幅值的层自适应稀疏化剪枝,进一步减小模型参数及计算量。在针对自制防震锤缺失数据集的测试中,YOLOv8-SPH表现卓越,其mAP@0.5达到了91.51%,相比原始YOLOv8n提高了6.3%,参数量减少了80.73%,计算量减少了48.14%,模型尺寸减少了62.41%。该模型在计算量和参数量降低的同时,提高了检测精度,充分满足了对输电线路中的防震锤进行高效和准确检测的需求,具有实用性。