基于改进Retinex的轻量化港口集装箱损伤检测
DOI:
CSTR:
作者:
作者单位:

1.无锡学院电子信息工程学院无锡214105;2.南京信息工程大学电子与信息工程学院南京210044

作者简介:

通讯作者:

中图分类号:

TP391.41;TN919.5

基金项目:

国家自然科学基金委青年基金(42205078)、苏高教会“高质量公共课教学改革研究”专项课题(2022JDKT138)、高校哲学社会科学研究一般项目(2022SJYB0979)、江苏职业教育研究立项课题一般项目(XHYBLX2023282)、2023江苏省大学生创新创业训练计划(202313982007Z)、无锡学院教改课题(XYJG2023002,XYJG2023023)项目资助


Lightweight container damage detection based on improved Retinex
Author:
Affiliation:

1.School of Electronic & Information Engineering, Wuxi University, Wuxi 214105, China; 2.School of Electronic & Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高港口复杂堆场环境下多种类集装箱损伤检测的效率,提出一种基于改进Retinex的轻量化港口集装箱损伤检测方法。该方法主要包含图像预处理与轻量化目标检测两部分:在图像预处理阶段,引入并优化亮度通道分量,在对其应用多尺度Retinex处理方法时,使用双边滤波器代替传统的高斯滤波,保留原物体的边缘细节;改进值域转换函数,减少图像数据的丢失;通过色彩平衡策略计算得到色彩保护因子,与原始RGB图像每个通道的像素点相乘得到增强图像。在目标检测阶段,将改进注意力机制后的轻量级网络MobileNetv3引入到YOLOv5主干网络中,构建成目标检测网络,从而对港口集装箱图像进行验证。实验结果表明,该方法在低照度等复杂港口环境下,有助于目标检测网络提取到更丰富的特征信息,对多种集装箱损伤类型的平均检测精度提升了1.4%,达到了95.1%,模型体积仅为20.5 MB,与多种主流检测算法相比具有显著优势,能够满足港口集装箱的实际检测需求,证明了该方法的有效性。

    Abstract:

    In order to improve the efficiency of multi-class container damage detection in complex yard environment, a lightweight container damage detection method based on improved RETINEX is proposed. The method mainly consists of two parts, image preprocessing and lightweight target detection: In image preprocessing stage, the luminance channel component is introduced and optimized, and when applying the multi-scale Retinex processing method to it, a bilateral filter is used instead of the traditional Gaussian filter to retain the edge details of the original object; the value domain conversion function is improved to reduce the loss of image data; and a color protection is obtained through the calculation of the color balancing strategy factor, which is multiplied with the pixel points of each channel of the original RGB image to get the enhanced image. In target detection stage, MobileNetv3, a lightweight network with improved attention mechanism, is introduced into the YOLOv5 backbone network to construct a text-based target detection network, so as to validate the port container images. The experimental results show that the method helps the target detection network to extract richer feature information in complex port environments such as low illumination, and the average detection accuracy of multiple container damage types is improved by 1.4% to 95.1%, and the model volume is only 20.5 MB, which is a significant advantage compared with multiple mainstream detection algorithms, and it can satisfy the actual detection needs of port containers, proving the effectiveness of the method in this paper.

    参考文献
    相似文献
    引证文献
引用本文

裴晓芳,刘菁宇,杨继海,周进,徐永恒.基于改进Retinex的轻量化港口集装箱损伤检测[J].电子测量与仪器学报,2025,39(9):233-243

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-09
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
关于防范虚假编辑部邮件的郑重公告