基于SResNet网络的复杂工况下间歇运动设备故障诊断方法
DOI:
CSTR:
作者:
作者单位:

1.昆明理工大学机电工程学院昆明650500;2.云南省先进装备智能制造技术重点实验室昆明650500; 3.昆明欧迈科技有限公司昆明650106

作者简介:

通讯作者:

中图分类号:

TN911.7

基金项目:

云南省重大科技专项计划(202202AC080003)项目资助


Fault diagnosis method for intermittent motion equipment under complex operating conditions based on SResNet network
Author:
Affiliation:

1.School of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China; 2.Key Laboratory of Advanced Equipment Intelligent Manufacturing Technology of Yunnan Provincial, Kunming 650500, China; 3.Kunming Optics-Mechanics-Electricity Technology Co., Ltd., Kunming 650106, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    间歇式运动设备是智能物流系统中的重要设备,其运行状态直接关系到整个系统的安全与可靠性。针对间歇运动设备运行过程轴承工作具有复杂性和不确定性,复杂工况下有效数据获取困难且故障样本稀缺导致滚动轴承故障诊断精度较低的问题,提出了一种基于自注意力模块(SAM)改进ResNet50网络(SResNet)的复杂工况下间歇运动设备故障诊断方法。首先,提出一种间歇工况识别方法用于提高状态数据的有效性;然后,利用连续小波变换将处理后的一维状态数据转化为故障特征信息更丰富的二维时频图谱;最后,提出基于SAM改进ResNet50网络,利用SAM增强网络对重要特征的关注,提升轴承故障诊断准确性和稳定性。使用轴承故障状态模拟实验数据集验证所提方法的故障诊断性能,实验结果表明,在复杂工况条件下该方法能够准确地对轴承的故障进行分类识别,且分类准确率可达到99%以上。与其他传统故障诊断方法相比,该方法在诊断效果和泛化性能上均有较大的提升。

    Abstract:

    Intermittent motion equipment is a critical component of intelligent logistics systems, and its operational condition directly impacts the safety and reliability of the entire system. In view of the complexity and uncertainty inherent in the operation of bearings within intermittent motion equipment, and the challenges posed by difficulties in acquiring effective data and the scarcity of fault samples under complex operating conditions, which result in low accuracy in rolling bearing fault diagnosis, this study proposes a fault diagnosis method for intermittent motion equipment under complex operating conditions based on the SResNet network. Firstly, an intermittent operating condition recognition method is proposed to enhance the effectiveness of state data. Secondly, the one-dimensional state data, after preprocessing, is transformed into a two-dimensional time-frequency spectrum using continuous wavelet transform (CWT), thereby enriching the fault feature information. Finally, an improved ResNet50 network is developed by incorporating a self-attention module (SAM). The SAM enhances the network’s focus on important features, thereby improving the accuracy and stability of bearing fault diagnosis. To validate the fault diagnosis performance of the proposed method, experiments were conducted using a bearing fault state simulation dataset. The results demonstrate that, under complex operating conditions, the proposed method can accurately classify and identify bearing faults, achieving a classification accuracy of over 99%. Compared to traditional fault diagnosis methods, the proposed approach exhibits significant improvements in diagnostic performance and generalization capability.

    参考文献
    相似文献
    引证文献
引用本文

肖剑,刘畅,贺飞飞,刘韬,许磊.基于SResNet网络的复杂工况下间歇运动设备故障诊断方法[J].电子测量与仪器学报,2025,39(6):274-283

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-16
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
关于防范虚假编辑部邮件的郑重公告