UWD-Net:一种轻量级超声波焊接表面缺陷检测网络设计
DOI:
CSTR:
作者:
作者单位:

1.昆明理工大学机电工程学院昆明650500;2.深圳职业技术大学智能制造技术研究院深圳518055

作者简介:

通讯作者:

中图分类号:

TP391.4;TN911.73

基金项目:

国家自然科学基金(12104324)、高层次人才科研启动项目(6022310046K,6024330003K)、深职大-新栋力超声波焊接技术研发中心(602331009PQ)、深圳职业技术大学博士后出站后期项目(6023271014K1)资助


UWD-Net: A lightweight network design for ultrasonic welding surface defect detection
Author:
Affiliation:

1.Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology,Kunming 650500, China; 2.Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic University,Shenzhen 518055, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    超声波焊接技术被广泛应用于工业制造领域,但焊接参数、设备状态和操作技术等因素常导致焊接缺陷多样化。为提高焊接效率,基于深度学习提出了一种轻量级网络UWDNet用于超声波焊接表面缺陷检测。首先,针对传统卷积在焊接缺陷检测中对细节信息不敏感、容易丢失关键细小缺陷特征的问题,提出了一种新型分步注意力卷积模块SA-Conv。SA-Conv架构增强了模型对缺陷特征的感知能力,并降低了设备运算成本。其次,针对复杂焊接缺陷特征提取困难的问题,设计了一种基于可变形卷积和SA-Conv的DCN-Module与WDFE-Module的缺陷特征提取网络。该网络在复杂背景下显著增强了对缺陷目标的表征能力,实现了对形状多变等特点的焊接缺陷特征的充分提取。最后实验结果定量与定性分析表明,UWD-Net在自建焊接缺陷数据集和NEU-DET公开数据集上均取得了优异的检测性能。在自建焊接缺陷数据集上,UWD-Net的F1值和平均精度均值(mAP)mAP@0.5分别达到0.952和936%,而在NEU-DET数据集上,其F1值和mAP@0.5分别达到0.710和78.6%,均优于其他对比算法。此外,UWD-Net的模型参数量仅为1.818×106,帧率达到145.80 fps,充分实现了检测精度与推理速度的平衡,为工业环境下的实时缺陷检测与部署提供了有效支持。

    Abstract:

    Ultrasonic welding technology is widely utilized in industrial manufacturing, however, factors such as welding parameters, equipment conditions, and operational techniques often lead to diverse welding defects. To enhance welding efficiency, this study proposes a lightweight deep-learning-based network, ultrasonic welding defect detection network, for ultrasonic welding surface defect detection. First, to address the limitations of conventional convolutional networks, which are often insensitive to fine details and prone to losing critical small-scale defect features in welding defect detection, this study introduces a novel stepwise attention convolution module. The SA-Conv architecture enhances the model’s ability to perceive defect features while reducing computational overhead. Second, to tackle the challenge of extracting complex welding defect features, this study designs a defect feature extraction network incorporating a deformable convolutional network module and a welding defect feature extraction module based on deformable convolution and SA-Conv. This network significantly improves defect representation in complex backgrounds, enabling the effective extraction of welding defect features with varying shapes and intricate characteristics. Finally, quantitative and qualitative experimental analyses demonstrate that UWD-Net achieves superior detection performance on both a self-constructed welding defect dataset and the publicly available NEU-DET dataset. On the self-constructed dataset, UWD-Net achieves an F1-score of 0.952 and a mAP@0.5 of 93.6%, while on the NEU-DET dataset, it attains an F1-score of 0.710 and a mAP@0.5 of 78.6%, outperforming other benchmark algorithms. Furthermore, UWD-Net has a lightweight model size of only 1.818×106 parameters and achieves an FPS of 145.80, effectively balancing detection accuracy and inference speed. These characteristics make UWD-Net well-suited for real-time defect detection and deployment in industrial applications.

    参考文献
    相似文献
    引证文献
引用本文

梁峰,赵伦,王森. UWD-Net:一种轻量级超声波焊接表面缺陷检测网络设计[J].电子测量与仪器学报,2025,39(6):65-77

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-16
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
关于防范虚假编辑部邮件的郑重公告