基于轻量化改进YOLOv8n绝缘子自爆缺陷检测方法*
DOI:
CSTR:
作者:
作者单位:

昆明理工大学

作者简介:

通讯作者:

中图分类号:

TP93??

基金项目:

云南省重点研发计划(202303AA080002);云南省基础研究计划面上项目(202401AT070356);云南省基础研究计划青年项目(202201AU070086)


Self-explosion Defect Detection Method of Insulator Based on Lightweight and Improved YOLOv8n
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    及时检测绝缘子自爆缺陷对输电线路安全可靠运行具有重要意义。针对深度学习模型对具有小目标特征的绝缘子自爆缺陷检测能力不足、模型结构复杂等问题,本文提出了一种基于轻量化改进YOLOv8n输电线路绝缘子自爆检测方法。以YOLOv8n网络为基础模型,通过添加小目标检测模块来捕捉绝缘子自爆的小目标细节信息,提高其检测能力;进一步,引入SIoU损失函数,解决原始CIoU损失函数未考虑真实框与预测框之间的方向问题,增强目标定位准确性;最后,使用通道剪枝方法,对改进模型进行剪枝,去除模型冗余参数、减少浮点运算量,降低模型计算成本和复杂度。在构建的绝缘子自爆数据集上的实验结果表明,轻量化改进方法的全类平均准确性达到97.1%,其浮点运算量和体积分别为4.9G和1.82MB,仅为原始模型的60.5%和29.7%,合理兼顾了绝缘子自爆检测的准确性和模型复杂性。在另一个输电线路巡检数据集中,本文方法对其他类型的小目标检测准确性也较好,具有良好的推广应用前景。

    Abstract:

    Timely detection of insulator self-explosion defects is of great significance to the safe and reliable operation of transmission lines. Aiming at the problems such as insufficient detection ability of insulator self-explosion defect with small target characteristics and complex model structure of deep learning model, this paper proposes a lightweight improved YOLOv8n insulator self-explosion detection method for transmission lines. Based on the YOLOv8n network model, a small target detection module is added to capture the details of the insulator self-exploding small target and improve its detection capability. Furthermore, SIoU loss function is introduced to solve the problem that the original CIoU loss function does not consider the direction between the real box and the predicted box, and the target positioning accuracy is enhanced. Finally, channel pruning method is used to prune the improved model, remove the redundant parameters of the model, reduce the floating point operations, and reduce the calculation cost and complexity of the model. The experimental results on the constructed insulator self-explosion data set show that the average accuracy of the lightweight improved method reaches 97.1%, and its floating point operations and volume are 4.9G and 1.82MB respectively, which is only 60.5% and 29.7% of the original model, which reasonably balances the accuracy of insulator self-detonation detection and the complexity of the model. In another transmission line inspection data set, the proposed method also has good detection accuracy for other types of small targets, and has a good prospect of popularization and application.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-03
  • 最后修改日期:2024-12-05
  • 录用日期:2024-12-06
  • 在线发布日期:
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
财务封账不开票通知