基于MADSC和SIDSwinT的滚动轴承故障诊断
DOI:
CSTR:
作者:
作者单位:

1.兰州理工大学电气工程与信息工程学院兰州730050; 2.兰州理工大学国家级电气与控制工程实验教学中心兰州730050

作者简介:

通讯作者:

中图分类号:

TH133.33; TN911.7

基金项目:

国家自然科学基金(62263021)、甘肃省教育厅产业支撑项目(2021CYZC-02)资助


Rolling bearing fault diagnosis based on MADSC and SIDSwinT
Author:
Affiliation:

1.School of Electrical Engineering and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China; 2.National Experimental Teaching Center of Electrical and Control Engineering, Lanzhou University of Technology, Lanzhou 730050, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对卷积神经网络通过局部感受野对输入信号进行特征提取,在变负荷和变噪声条件下无法有效捕获全局上下文信息导致滚动轴承故障诊断精度较低的问题,提出了一种多尺度自适应深度可分离卷积(MADSC)和空间交互双流Swin Transformer(SIDSwinT)的滚动轴承故障诊断方法。首先,利用小波变换将一维振动信号转换成二维时频图以保留完整信息;接着,构建MADSC提取局部特征信息,捕捉不同尺度下滚动轴承振动信号的特征变化;然后,设计SIDSwinT提取全局特征信息,利用提出的空间交互模块(SIM)自适应地调整特征权重;同时,通过可变形注意力对采样信息进行加权消除工况波动造成的分布差异;最后,利用双向长短时记忆网络(BiLSTM)更好地理解上下文信息,提升诊断准确性和稳定性。使用两种不同数据集验证所提方法的故障诊断性能,实验结果表明,所提方法在信噪比为-4时准确率高于93.00%,在变负荷条件下准确率高于92.00%,验证了所提方法较对比方法具有更强的抗噪性能和泛化能力。

    Abstract:

    Aiming at the problem that the convolutional neural network extracts the features from the input signal through the local receptive field, and cannot effectively capture the global context information under variable load and noise environments, resulting in the low recognition accuracy of rolling bearing fault diagnosis, a rolling bearing fault diagnosis method based on multiscale adaptive depthwise separable convolution (MADSC) and spatial interaction double-stream Swin Transformer (SIDSwinT) is proposed. Firstly, one-dimensional vibration signals are converted into two-dimensional time-frequency maps using wavelet transform to retain the complete information. Next, MADSC is constructed to extract local feature information and capture the characteristic changes of rolling bearing vibration signals at different scales. After that, SIDSwinT is designed to extract the global feature information, and the proposed spatial interaction module (SIM) is utilized to adaptively adjust the feature weights, while the sampled information is weighted by the deformable attention to eliminate the distributional differences caused by fluctuations in working conditions. Finally, bidirectional long short-term memory (BiLSTM) is utilized to better understand the contextual information and to improve the diagnostic accuracy and stability. Two different datasets are used to verify the fault diagnosis performance of the proposed method, and the experimental results show that the accuracy of the proposed method is higher than 93.00% when the signal-to-noise ratio is -4, and the accuracy is higher than 92.00% under the condition of variable load, which verifies that the proposed method has a stronger anti-noise performance and generalization ability than the comparison methods.

    参考文献
    相似文献
    引证文献
引用本文

赵小强,安贵财.基于MADSC和SIDSwinT的滚动轴承故障诊断[J].电子测量与仪器学报,2024,38(11):58-69

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-13
  • 出版日期:
文章二维码