基于改进的SE-LSTM水泥熟料f-Cao预测模型
DOI:
CSTR:
作者:
作者单位:

1.合肥工业大学电气与自动化工程学院;2.合肥水泥研究设计院有限公司

作者简介:

通讯作者:

中图分类号:

TP183

基金项目:

202104a05020054


Prediction model of cement clinker f-CaO based on the improved SE-LSTM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在水泥生产中,熟料是关键成分,其质量直接影响水泥的整体性能。水泥熟料中游离氧化钙(f-CaO)的含量是评估熟料质量的重要参数之一。为了弥补传统实验室化验方法在时效性上的不足,本文构建了一种高效准确的水泥熟料f-CaO含量软测量模型,该模型结合了通道注意力机制和长短时记忆网络。利用融合了注意力机制的特征提取方法对数据集进行特征提取;然后将特征输入到LSTM网络进行学习,使模型能够以自适应方式聚焦于核心的特征通道;由于LSTM在预测波动性较大的数据上预测效果较差,针对此问题对上述软测量模型进行改进,在原有模型基础上引入分类模块与加权模块对LSTM网络的预测结果进行修正,使得模型可以更加灵活地适应不同类别之间的差异,通过优化各类别之间的权重,提高了模型预测的准确性。实验结果表明,改进SE-LSTM的水泥熟料f-CaO预测模型的决定系数(R2)、均方根误差(RMSE)和平均绝对误差(MAE)比普通LSTM和SE-LSTM预测模型都有明显提升,因此在水泥熟料f-CaO的含量预测上所提的改进模型提高了预测精度,达到了预期的预测效果。

    Abstract:

    In cement production, clinker is the key component, and its quality directly affects the overall performance of cement. The content of free calcium oxide (f-CaO) in cement clinker is one of the important parameters to evaluate the quality of cement clinker. In order to make up for the lack of timeliness of traditional laboratory methods, this paper constructs an efficient and accurate soft sensor model for cement clink f-CaO content, which combines channel attention mechanism and long short-term memory network. The feature extraction method combined with attention mechanism was used to extract the features of the data set. Then, the features were input into the LSTM network for learning, so that the model could focus on the core feature channels in an adaptive manner. Due to the poor prediction effect of LSTM on data with large volatility, the above soft sensor model is improved. Based on the original model, the classification module and weighting module are introduced to modify the prediction results of the LSTM network, so that the model can be more flexible to adapt to the differences between different categories. The accuracy of the model prediction is improved. The experimental results show that the coefficient of determination (R2), Root Mean Square Error (RMSE) and Mean Absolute error (MAE) of the improved SE-LSTM prediction model for cement clink f-CaO are significantly improved compared with the ordinary LSTM and SE-LSTM prediction models. Therefore, the improved model proposed in the prediction of cement clinker f-CaO content improves the prediction accuracy and achieves the expected prediction effect.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-08
  • 最后修改日期:2024-11-19
  • 录用日期:2024-11-25
  • 在线发布日期:
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
财务封账不开票通知