全局与局部多尺度特征融合晶圆缺陷分类网络
DOI:
CSTR:
作者:
作者单位:

兰州理工大学电气工程与信息工程学院兰州730000

作者简介:

通讯作者:

中图分类号:

TN305;TP18;TP391.41

基金项目:

甘肃省科技计划资助(24JRRA179)、甘肃省科技重大专项(23ZDGE001)、甘肃省联合科研基金项目(24JRRA829)资助


Wafer defect classification network with global and local multi-scale feature fusion
Author:
Affiliation:

College of Electrical and Information Engineering,Lanzhou University of Technology, Lanzhou 730000,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在半导体制造领域,晶圆缺陷分类是确保产品质量的重要步骤。然而,由于晶圆缺陷的多样性和复杂性,现有的混合型晶圆缺陷分类网络在准确性上仍然存在不足。针对这一问题,提出了一种基于全局和局部多尺度特征融合的混合型晶圆缺陷分类网络—MLG-Net。MLG-Net由3个主要模块组成:特征提取模块、全局分支和局部分支。该网络旨在更好地提取和利用晶圆缺陷图像的全局语义信息与局部细节特征,这两种特征通过多尺度特征融合技术相结合,最终形成一个更加全面的特征表示,有助于分类器在面对复杂混合缺陷时,做出更为准确的判断,从而提升分类精度。为了验证MLG-Net的有效性,在包含38种混合类型缺陷的数据集—MixedWM38上进行了大量实验,其分类准确度达到98.84%。结果表明,MLG-Net在综合性能上优于当前主流的六种晶圆缺陷分类方法。这一结果证明了全局与局部特征融合在处理混合型晶圆缺陷分类任务中的重要性和有效性。

    Abstract:

    In semiconductor manufacturing, wafer defect classification is an important step in ensuring product quality. However, due to the diversity and complexity of wafer defects, the existing hybrid wafer defect classification network still has shortcomings in accuracy. To solve this problem, a hybrid wafer defect classification network based on global and local multi-scale feature fusion—MLG-Net was proposed. MLG-Net consists of three main modules: feature extraction module, global branch, and local branch. The network aims to better extract and utilize the global semantic information and local detail features of wafer defect images, which are combined with multi-scale feature fusion technology to form a more comprehensive feature representation, which helps the classifier to make more accurate judgments in the face of complex mixed defects, thereby improving the classification accuracy. To verify the effectiveness of MLG-Net, a large number of experiments were carried out on MixedWM38, a dataset containing 38 mixed types of defects, and the classification accuracy reached 98.84%. The results show that MLG-Net is superior to the six mainstream wafer defect classification methods in terms of comprehensive performance. This result demonstrates the importance and effectiveness of global and local feature fusion in dealing with hybrid wafer defect classification tasks.

    参考文献
    相似文献
    引证文献
引用本文

陈晓雷,李正成,杨富龙,温润玉,沈星阳.全局与局部多尺度特征融合晶圆缺陷分类网络[J].电子测量与仪器学报,2024,38(10):159-169

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-16
  • 出版日期:
文章二维码