面向特钢车间内物料实时跟踪的钢管目标检测算法研究
DOI:
CSTR:
作者:
作者单位:

1.武汉科技大学信息科学与工程学院武汉430081;2.武汉科技大学冶金自动化与 检测技术教育部工程研究中心武汉430081

作者简介:

通讯作者:

中图分类号:

TP399;TN06

基金项目:


Research on steel pipe target detection algorithm for real-time material tracking in special steel workshop
Author:
Affiliation:

1.School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; 2.Engineering Research Center for Metallurgical Automation and Detecting Technology of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在特钢企业向“灯塔工厂”转型升级中,实现钢管物料实时跟踪是其中的核心内容,由于物料多样性以及产线的复杂性使得接近式传感器无法满足物料检测可靠性要求。为此,依据车间内现有环境和需求,搭建物料跟踪摄像系统,采集了物料及产线上部分特征组成图像数据集;基于视频分析,引入了一种面向特钢车间内物料实时跟踪的钢管目标检测算法。该算法以PPYOLOE网络为基础。首先,将PPYOLOE中的CSPRepResNet主干网络替换成HGNetV2轻量级主干网络,在提升特征提取能力同时减小参数量;其次,在Neck中融合HG-Block和SPPELAN进一步减小参数提升速度;最后,在上采样阶段,运用Dysample动态上采样算子提升不同尺度特征的融合效果,提升算法的检测精度。实验结果表明,相比于原始的PPYOLOE算法,改进后的算法在检测精度上提升了1.6%达到80.5%,检测速度提升了16%达到56.4帧,GFLOPs和参数分别下降35%和33%。改进后算法有效提升了检测精度和检测速度,通过现场部署实施,满足了钢管物料实时跟踪要求。

    Abstract:

    In the transformation and upgrade of special steel enterprises into “lighthouse factories”, real-time tracking of steel pipe materials is a core component. Due to the diversity of materials and the complexity of the production line, proximity sensors fail to meet the reliability requirements of material detection. Therefore, according to the existing environment and requirements of the workshop, a material tracking camera system is built, and the image data set composed of some characteristics of materials and production lines is collected. Based on video analysis, a steel pipe target detection algorithm for real-time material tracking in special steel workshops is introduced. The algorithm is based on the PPYOLOE network. Firstly, the CSPRepResNet backbone in PPYOLOE is replaced with the lightweight HGNetV2 backbone, which enhances feature extraction capabilities while reducing the number of parameters. Secondly, HG-Block and SPPELAN are integrated into the Neck, further reducing the parameters and improving speed. Finally, in the upsampling stage, the Dysample dynamic upsampling operator is employed to enhance the fusion of multi-scale features, thus improving detection accuracy. Experimental results show that compared with the original PPYOLOE algorithm, the improved algorithm enhances detection accuracy by 1.6%, reaching 80.5%, and increases detection speed by 16%, reaching 56.4 FPS, while GFlops and parameters are reduced by 35% and 33%, respectively. The improved algorithm effectively boosts both detection accuracy and speed,and through on-site deployment, it meets the real-time tracking requirements of steel pipe materials.

    参考文献
    相似文献
    引证文献
引用本文

赵云涛,黄哲辉.面向特钢车间内物料实时跟踪的钢管目标检测算法研究[J].电子测量与仪器学报,2024,38(11):210-218

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-13
  • 出版日期:
文章二维码