CPSO优化BP网络的MEMS陀螺随机误差补偿
DOI:
CSTR:
作者:
作者单位:

长江大学地球物理与石油资源学院武汉430100

作者简介:

通讯作者:

中图分类号:

V241.5;TN98

基金项目:

湖北省重点研发计划(2020BAB094)项目资助


MEMS gyroscope random error compensation based on CPSO-optimized BP network
Author:
Affiliation:

School of Geophysics and Petroleum Resources,Yangtze University, Wuhan 430100,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对微电子机械(MEMS)陀螺存在随机误差而导致测量精度低的问题,提出一种基于混沌粒子群算法(CPSO)优化反向传播(BP)神经网络的补偿方法对随机误差进行处理。首先采集MEMS陀螺数据,利用C-C法重构相空间,基于李雅普诺夫指数分析和验证其混沌特性,然后将重构数据作为BP神经网络模型的训练样本,利用CPSO算法优化BP神经网络的权值和阈值,获得用于误差补偿的优化模型,最后采用ADXRS624对优化模型的补偿效果进行静态实验验证,并与BP模型和粒子群优化(PSO)模型补偿结果对比。实验分析结果表明,经CPSO算法优化模型补偿后的误差均值和标准差分别为-5.76×10-4(°)/s和5.19×10-4(°)/s,相比BP、粒子群优化(PSO)模型误差分别下降68.6%、52.1%和98.4%、93.5%。通过Allan方差分析补偿后的误差系数,经CPSO-BP方法补偿后的量化噪声、角度随机游走和零偏不稳定性分别降低至0.000 59 μrad、0.001 51 ((°)·h-1/2)和2.82 ((°)·h-1)。新方法在抑制随机误差上有明显的效果,可提高MEMS陀螺的测量精度。

    Abstract:

    Aiming at the problem of low measurement accuracy due to the existence of random error in microelectromechanical system (MEMS) gyroscope, a compensation method based on chaotic particle swarm algorithm (CPSO) optimized back propagation (BP) neural network is proposed to deal with the random error. Firstly, The MEMS gyroscope data are collected, the reconstruction parameters are determined and the phase space is reconstructed using the C-C method, and the chaotic properties are analyzed and verified based on the Lyapunov exponent. Then, the reconstructed data are used as the training samples for the BP neural network model. The BP neural network model is trained, and the weights and thresholds of BP neural network are optimized by using the CPSO algorithm, then the optimized model for error compensation is obtained. Finally, ADXRS624 is used to validate the compensation effect of the optimized model in static experiment, and the compensation results are compared with BP model and particle swarm optimization (PSO) model. Experimental analysis results show that the mean and standard deviation of the gyroscope output errors are -5.76×10-4(°)/s and 5.19×10-4(°)/s, which are decreased by 68.6% and 98.4% compared with the BP model, and 52.1% and 93.5% compared with the particle swarm optimization model, respectively. By comparing the error coefficients after compensation for each method using Allan variance identification, the quantization noise, angle random walk and zero bias instability after being compensated by CPSO-BP method are reduced to 0.000 59 μrad, 0.001 51 ((°)·h-1/2) and 2.82 ((°)·h-1), respectively. The new method has obvious effect in suppressing the random error and can improve the measurement accuracy of MEMS gyroscope.

    参考文献
    相似文献
    引证文献
引用本文

李涵,胡少兵,程为彬. CPSO优化BP网络的MEMS陀螺随机误差补偿[J].电子测量与仪器学报,2024,38(11):228-234

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-13
  • 出版日期:
文章二维码