融合邻域搜索的自适应鲸鱼优化算法
DOI:
CSTR:
作者:
作者单位:

1.重庆邮电大学通信与信息工程学院 2.重庆 400065

作者简介:

通讯作者:

中图分类号:

TP301.6?????????????

基金项目:

重庆市研究生科研创新项目 (CYS23453, CYS22473),重庆市自然科学基金面上项目(CSTB2023NSCQ-MSX0249, CSTB2023NSCQ-MSX0832),重庆市教委科学技术研究项目(KJQN202300615)


Adaptive Whale Optimization Algorithm Combining Neighborhood Search
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    鲸鱼优化算法(Whale Optimization Algorithm, WOA)是一种高效的群体智能优化算法。与其他智能优化算法相比,WOA由于结构简单,参数少以及强大的优化能力已经被广泛使用。然而,传统的WOA存在收敛速度慢,容易陷入局部最优的问题。为了解决这些问题,本文提出了一种改进的鲸鱼优化算法(Improved Whale Optimization Algorithm, IWOA),该算法采用自适应更新机制,在优化过程中引入个体历史最优位置,并通过自适应策略动态调整全局历史最优位置和个体历史最优位置的权重;同时通过邻域搜索策略,在迭代后期围绕全局历史最优位置进行邻域更新,提升算法寻优能力。选取16个典型的基准测试函数以及CEC2014测试集的8个复合函数进行了仿真实验,验证IWOA的有效性;并将IWOA应用在焊接梁和压力容器设计2个工程设计问题上,相比于WOA,经济成本分别节约了3.94%、5.58%,验证了算法的有效性。

    Abstract:

    The Whale Optimization Algorithm (WOA) is a highly competitive and efficient swarm intelligence optimization algorithm. In comparison to other intelligent optimization algorithms, WOA offers a simple structure, fewer parameters, and robust optimization capabilities. However, the conventional WOA exhibits slow convergence and falls into local optima easily. To address these issues, this paper proposes an Improved Whale Optimization Algorithm (IWOA), which adopts an adaptive update mechanism, introduces individual historical optimal positions during the optimization process, and dynamically adjusts the weights of global historical optimal positions and individual historical optimal positions through adaptive strategies; at the same time, through neighborhood search strategy, neighborhood updates are carried out around the global historical optimal position in the later stage of iteration to improve the algorithm"s optimization ability. 16 typical benchmark test functions and 8 composite functions from the CEC2014 test set were selected for simulation experiments to verify the effectiveness of IWOA; and IWOA was applied to two engineering design problems, welding beam and pressure vessel design. Compared with WOA, the economic cost was saved by 3.94% and 5.58%, respectively, verifying the effectiveness of the algorithm.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-03
  • 最后修改日期:2024-11-20
  • 录用日期:2024-11-25
  • 在线发布日期:
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
财务封账不开票通知