密集级联卷积与自注意力特征聚合的视网膜血管分割模型
DOI:
CSTR:
作者:
作者单位:

1.三峡大学水电工程智能视觉监测湖北省重点实验室宜昌443002;2.三峡大学计算机与信息学院宜昌443002

作者简介:

通讯作者:

中图分类号:

TP391.41;TN06

基金项目:

国家自然科学基金(U1401252)项目资助


Retinal vascular segmentation algorithm based on full scale dense convolutional u-shaped networks
Author:
Affiliation:

1.Hubei Key Laboratory of Intelligent Vision based Monitoring for Hydroelectric Engineering, Three Gorges University, Yichang 443002,China;2.School of Computer and Information Technology, Three Gorges University, Yichang 443002,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对视网膜图像中细小血管分割困难以及血管分割过程中出现断裂的问题,构建了一种密集级联卷积与自注意力特征聚合的网络用于视网膜血管图像的分割。该网络采用多尺度密集卷积结合自注意力机制;为更好的提取视网膜细小血管复杂的特征信息,构建密集聚合模块作为U型网络的骨干网络;在网络底层嵌入自注意力摸块和多尺度聚合模块,以提升感受野和获取高维语义特征信息;在模型的跳跃连接部分采用特征聚合模块,提升模型的分割精度。实验结果表明,在DRIVE公开数据集上,该网络的F1-sore指标达到83.19%,准确率ACC指标达到97.11%,AUC值达到了98.94%;在CHASE-DB1和STARE数据集上,相比于Unet、DUNet、SA-Unet和FR-Unet等网络, 该网络的AUC指标均达到了目前最好效果。采用该网络进行视网膜血管分割,分割的精度和鲁棒性均有不同程度的提升,对细小血管分割及其泛化能力达到了优异的效果.

    Abstract:

    A dense cascade convolution and self attention feature aggregation network was constructed for the segmentation of retinal vascular images, addressing the difficulties in segmenting small blood vessels and the occurrence of fractures during the segmentation process. The network utilizes multi-scale dense convolution combined with self attention mechanism; To better extract complex feature information of retinal small blood vessels, a dense aggregation module is constructed as the backbone network of the U-shaped network; Embedding self attention patches and multi-scale aggregation modules at the bottom layer of the network to enhance receptive fields and obtain high-dimensional semantic feature information; The feature aggregation module is used in the skip connection part of the model to improve the segmentation accuracy of the model. The experimental results show that on the DRIVE public dataset, the F1 score of the network reaches 83.19%, the accuracy ACC score reaches 97.11%, and the AUC value reaches 98.94%; On the CHASE-DB1 and STARE datasets, compared with Unet, DUNet, SA Unet, and FR Unet networks, the AUC index of this network has achieved the best results so far. Using this network for retinal vessel segmentation, the accuracy and robustness of segmentation have been improved to varying degrees, achieving excellent results in small vessel segmentation and its generalization ability.

    参考文献
    相似文献
    引证文献
引用本文

夏平,何志豪,雷帮军,张海镔,彭程,王雨蝶.密集级联卷积与自注意力特征聚合的视网膜血管分割模型[J].电子测量与仪器学报,2024,38(9):36-44

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-02
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
财务封账不开票通知