基于无模型自适应迭代学习的液压锚杆钻机转速控制
DOI:
CSTR:
作者:
作者单位:

1.河南理工大学电气工程与自动化学院焦作454000;2.河南省煤矿装备智能检测与控制重点实验室焦作454000

作者简介:

通讯作者:

中图分类号:

TP273

基金项目:

国家自然科学基金(62273133)、河南省自然科学基金杰出青年基金(242300421053)、河南省科技项目 (242102210010,242102210036) 、河南省高校基本科研业务费专项资金资助(NSFRF240606,NSFRF240608) 、焦作市科技规划项目(2023210043)资助


High order model-free adaptive iterative learning control for speed control of hydraulic anchor drill
Author:
Affiliation:

1.School of Electrical Engineering and Automation, Henan Polytechnic University, Jiaozuo 454000, China; 2.Henan Key Laboratory of Intelligent Detection and Control of Coal Mine Equipment, Jiaozuo 454000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对存在参数不确定、非线性约束液压锚杆钻机回转系统的转速高精度控制问题,利用钻机作业的重复性,提出了一种基于无模型自适应迭代学习的液压锚杆钻机回转系统转速控制方案。首先,搭建钻机回转控制系统关于转速的状态空间模型。其次,利用动态线性化技术,构造钻机回转系统液压马达与伺服阀电流在迭代域的等价线性映射关系,并根据系统采集的历史伺服阀电流输入、液压马达转角输出数据,提出无模型自适应迭代学习转速控制设计方法。然后在理论上给出液压锚杆钻机回转系统转速跟踪误差沿数据方向以及重复作业方向的渐近收敛性。最后,利用MATLAB软件和AMEsim平台联合仿真验证算法的有效性。结果表明,相比于传统PID算法和迭代学习控制算法,所提出的算法在不需要已知锚杆钻机系统模型的情况下,能够仅利用可测数据实现钻机转速的高精度控制,并且在面对突加外部干扰、油温波动情况下仍具备良好的自适应、抗干扰能力。

    Abstract:

    Aiming at the problem of high-precision control of rotational speed in the rotary system of hydraulic anchor drilling rigs in the presence of parameter uncertainty and nonlinear constraints, a model-free adaptive iterative learning-based rotational speed control scheme for the rotary system of hydraulic anchor drilling rigs is proposed by taking advantage of the repetitive nature of the drilling rig operation. First, the state space model of the drill rig slewing control system about the rotational speed is constructed. Secondly, the dynamic linearization technique is used to construct the equivalent linear mapping relationship between the hydraulic motor and the servo valve current in the iterative domain of the drilling rig slewing system, and the model-free adaptive iterative learning speed control design method is proposed based on the historical servo valve current input and hydraulic motor rotary angle output data collected by the system. The asymptotic convergence of the rotational speed tracking error of the hydraulic anchor drilling rig slewing system along the data direction as well as in the direction of repeated operations is then given theoretically. Finally, the effectiveness of the algorithm is verified by joint simulation using MATLAB software and AMEsim platform. The results show that compared with the traditional PID algorithm and the iterative learning control algorithm, the proposed algorithm can realize the high-precision control of the drilling rig speed by using only the measurable data without the need of a known anchor drilling rig system model, and it still has a good adaptive and anti-jamming ability in the face of the sudden external disturbances and the fluctuation of the oil temperature.

    参考文献
    相似文献
    引证文献
引用本文

朱敏,卜旭辉,梁嘉琪.基于无模型自适应迭代学习的液压锚杆钻机转速控制[J].电子测量与仪器学报,2024,38(6):95-103

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-11
  • 出版日期:
文章二维码