基于点云强度和地面约束的大范围激光SLAM
DOI:
CSTR:
作者:
作者单位:

1.南京信息工程大学自动化学院南京210044;2.南京信息工程大学江苏省大气环境与装备技术协同创新中心 南京210044;3.南京工业大学计算机与信息工程学院南京211816;4.南京信息工程大学电子与信息工程学院南京210044

作者简介:

通讯作者:

中图分类号:

TP242;TN958.98

基金项目:

国家自然科学基金(62376128, 62272236)、江苏省自然科学基金(BK20201136)、江苏省研究生科研与实践创新计划项目(SJCX23_0380) 资助


Large scale based on point cloud strength and ground constraints Lidar SLAM
Author:
Affiliation:

1.College of Automation, Nanjing University of Information Science & Technology, Nanjing 210044, China; 2.Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China; 3.College of Computer and Information Engineering, Nanjing Tech University, Nanjing 211816,China; 4.School of Electronics and Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在无人车领域,点云强度和地面约束对大范围环境下的建图和定位起着非常重要的作用。然而,现有的激光SLAM算法在构建地图时只考虑几何特征,而忽视点云强度信息和地面约束,导致建图细节模糊、在Z轴方向上易存在漂移,从而降低了SLAM系统的精度。为此,本文提出了一种基于点云强度和地面约束的激光SLAM优化算法。基于地面测量模型,提出构建局部条件性地面约束,不仅提高地面点提取的准确性,而且减少Z轴方向的漂移;引入点云强度信息来改善非地面点聚类的可靠性,进一步提高建图精度和定位稳定性。提出基于局部平滑度的特征提取方法,通过引入强度因子并对强度特征进行排序,优先选择具有一致强度信息的特征,增强特征提取的鲁棒性。引入球形强度图来构建强度残差,与几何残差共同优化估计位姿,有效解决里程计中地图细节处的模糊问题;基于特征投影的匹配距离以及强度差异被用来去除动态点云的干扰,进一步提高SLAM系统的鲁棒性。在公开数据集KITTI和真实场景下的实验表明,引入地面约束和点云强度信息后,本文提出的算法具有更高的建图和定位精度,相对优于传统LIO-SAM的LVI-SAM算法,本文算法的精度提升了54.5%,为无人车在大范围环境中的SLAM任务提供了可靠解决方案。

    Abstract:

    In the field of unmanned vehicles, point cloud strength and ground constraints play a very important role in mapping and positioning under large-scale environment. However, existing laser SLAM algorithms only consider geometric features when constructing maps, and neglect point cloud intensity information and ground constraints, resulting in blurry mapping details and drifting in the Z-axis direction, thereby reducing the accuracy of SLAM systems. To this end, this paper proposes a laser SLAM optimization algorithm based on point cloud intensity and ground constraints. Based on the ground measurement model, it is proposed to construct local conditional ground constraints, which not only improves the accuracy of ground point extraction but also reduces the drifting in the Z-axis direction; introducing point cloud intensity information to improve the reliability of non-ground point clustering, further improving mapping accuracy and positioning stability. A feature extraction method based on local smoothness is proposed, in which by introducing intensity factors to rank intensity features, features with consistent intensity information are selected preferentially, enhancing the robustness of feature extraction. The pose is optimized and estimated by constructing strength residuals based on a spherical strength map, together with geometric residuals, effectively solving the problem of blurring in map details in odometry. The matching distance and intensity difference based on feature projection are used to remove interference from dynamic point clouds, further improving the robustness of SLAM systems. Experiments on the public dataset KITTI and real scenarios have shown that the proposed algorithm has higher mapping and positioning accuracies by introducing ground constraints and point cloud strength information. Compared to the LVI-SAM algorithm that outperforms traditional LIO-SAM algorithm, the proposed algorithm in this paper is improved by 54.5% in accuracy, providing a reliable solution for SLAM tasks of unmanned vehicles in large-scale environment.

    参考文献
    相似文献
    引证文献
引用本文

孙伟,曾豪霆,张小瑞,王煜,叶健峰.基于点云强度和地面约束的大范围激光SLAM[J].电子测量与仪器学报,2024,38(4):66-75

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-02
  • 出版日期:
文章二维码