摘要:针对MEMS传感器所测得的加速度和角速度输出信号噪声较大问题,提出一种基于鹈鹕优化算法(pelican optimization algorithm,POA)的变分模态分解(variational mode decomposition,VMD)结合小波阈值(wavelet threshold,WT)的去噪方法。首先利用POA对VMD的参数组合进行优化选择,然后应用POA-VMD将含噪信号自适应、非递归地分解为一系列本征模态函数(intrinsic mode function,IMF)。再通过计算每个IMF的余弦相似度对IMFs进行分类,根据计算结果将IMFs分为噪声主导分量与信号主导分量,对分类后的噪声主导分量进行改进小波阈值去噪处理,最后对处理后的噪声分量与信号主导分量进行重构,获得降噪后的MEMS传感器信号。静态和动态实验结果表明,该方法去噪处理后信号的信噪比分别提高12和10 dB,均方误差分别降低75.5%和46.6%,去噪效果显著,能够提高MEMS传感器的精度。