冗余捷联惯导软故障检测方法研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN965;U666. 1

基金项目:

高新工程重大专项(5140501B0203) 项目资助


Research on soft fault detection method of redundant SINS
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对冗余捷联惯导系统在软故障检测上仍然存在实时性低、检测性能易受环境影响的问题,提出了一种 APV/ FASPRT 算法。 首先根据硬件冗余配置构造奇偶空间,对奇偶残差执行 SPRT 算法,引入了渐消因子与周期重置提高对当前残差信息的 跟踪速度;其次通过 APV 算法检测故障结束时刻以重置渐消 SPRT 并提供敏感轴信息;最后针对工程常用的四、六陀螺冗余配 置提出了一种基于可容性故障的检测阈值确定方法以增强故障检测的稳定性。 仿真结果表明,该算法在软故障检测上分别比 GLT、SPRT、APV 方法平均检测延迟减少了 50. 59%、70. 21%、2. 32%、平均虚警率降低了 69. 31%、99. 33%、64. 77%,在增强了软 故障检测的实时性的同时减少了无故障时刻的虚警率。

    Abstract:

    To solve the problems of low real-time performance and easy environmental impact in soft fault detection of redundant strapdown inertial navigation system (SINS), an APV/ FASPRT algorithm is proposed. Firstly, the parity space is constructed according to the hardware redundancy configuration, SPRT algorithm is implemented for the parity residual, and the fading factor and periodic reset are introduced to improve the tracking speed of the current residual information. Secondly, APV algorithm is used to detect the fault end time to reset the fading SPRT and provide sensitive axis information. In order to enhance the stability of fault detection, a threshold determination method based on the admissibility fault is proposed for the four and six gyro redundancy configurations commonly used in engineering. The simulation results show that compared with GLT, SPRT and APV methods, the average detection delay of the proposed algorithm is reduced by 50. 59%, 70. 21% and 2. 32%, and the average false alarm rate is reduced by 69. 31%, 99. 33% and 64. 77%, respectively. The real time of soft fault detection is enhanced and the false alarm rate is reduced in normal running time.

    参考文献
    相似文献
    引证文献
引用本文

蔡紫烨,周凌柯,黄海舟,张永耀,李 胜.冗余捷联惯导软故障检测方法研究[J].电子测量与仪器学报,2023,37(10):115-122

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-12-21
  • 出版日期:
文章二维码