融合聚类及随机配置网络的短期光伏功率预测
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM615

基金项目:

国家自然科学基金(62203197)、辽宁省“兴辽英才计划”青年拔尖人才项目(XLYC2007091)资助


Short-term PV power prediction by fusion of clustering and SCN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了降低天气因素对光伏发电功率的输出值预测精度的影响,从聚类分析和信号分解两方面入手,提出了一种融合聚 类算法(KDGMM),改进的变分模态分解(VMD)与随机配置网络(SCN)的预测模型。 首先通过 KDGMM 聚类将气象数据划分 成晴天、阴天和雨天,针对阴天难以准确预测的问题,采用灰色关联度分析(GRA)选择相似日,其次引入莱维飞行北方苍鹰优 化算法(LNGO)优化 VMD 得到最优参数,从而降低阴天光伏功率的非平稳性。 最后构建 SCN 预测模型对光伏功率数据进行预 测,输出其预测结果。 通过实验分析,所提方法的均方根误差(RMSE)和平均绝对百分比误差(MAPE)仅为 1. 44 和 1. 3%,拟合 优度指标 R 2 高达 0. 99,与其他预测方法相比,本文所提方法有较高的预测精度。

    Abstract:

    In order to reduce the influence of weather factors on the prediction accuracy of the output value of photovoltaic power generation, it is proposed a prediction model incorporating the clustering algorithm ( KDGMM), the improved variational modal decomposition (VMD) and the stochastic configuration network ( SCN), starting from both cluster analysis and signal decomposition. Firstly, the meteorological data are classified into sunny, cloudy and rainy days by KDGMM clustering, and for the problem that it is difficult to predict accurately on cloudy days, gray correlation analysis (GRA) is used to select similar days, and secondly, the L􀆧vy northern goshawk optimization (LNGO) algorithm is introduced to optimize VMD to get the optimal parameters, so as to reduce the nonsmoothness of PV power on cloudy days. Finally, the SCN prediction model is constructed to predict the PV power data and output its prediction results. Through experimental analysis, the root mean square error (RMSE) and the mean absolute percentage error (MAPE) of the proposed method are only 1. 44 and 1. 3%, and the R 2 index for goodness of fit is as high as 0. 99. Compared with other prediction methods, the proposed method has higher prediction accuracy

    参考文献
    相似文献
    引证文献
引用本文

韩 莹,朱宏宇,李 琨.融合聚类及随机配置网络的短期光伏功率预测[J].电子测量与仪器学报,2023,37(11):205-216

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-30
  • 出版日期:
文章二维码