管道电磁超声传感器阵列检测技术研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN06

基金项目:

国家自然科学基金(12172016,51875010)项目资助


Electromagnetic acoustic transducer array of pipeline inspection technology
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    采用电磁超声传感器阵列对管道进行缺陷检测,不仅能够提高电磁超声检测信号的信噪比、灵敏度与分辨能力,同时也 能增强电磁超声检测的直观性与灵活性。 本文详细阐述了基于洛伦兹力的周期永磁铁阵列式电磁超声传感器(PPM-EMAT)激 励超声导波的工作原理,及利用全聚焦算法结合极性一致性算法对缺陷进行定位与成像的工作机理。 建立了有限元仿真模型, 验证了准 T(0,1)模态导波在管道结构中的传播过程。 利用研制的多通道电磁超声检测系统,对含缺陷的不锈钢管道进行了检 测实验,实验结果表明,研制的系统能够检测出管道试样中的多个通孔缺陷,纵向定位误差可控制在 1. 5%以下,实现了基于阵 列电磁超声传感器的管道缺陷成像与定位。

    Abstract:

    The utilization of electromagnetic ultrasonic sensor arrays for pipe defect detection not only improves the signal-to-noise ratio, sensitivity and resolution of electromagnetic ultrasonic detection signals, but also enhances the intuitiveness and flexibility of electromagnetic ultrasonic detection. In this paper, the working principle of the Lorentz force-based periodic permanent magnet arraytype electromagnetic ultrasound transducer (PPM-EMAT) for excitation of ultrasound guided waves was referred and the mechanism of defect localization and imaging was used by the TFM and the SCF. Then the FE model was built to verify the process of quasi-T (0,1) mode guided wave propagation in a pipeline structure. Finally, the developed multi-channel electromagnetic ultrasonic inspection system was used to perform actual inspection of stainless-steel pipelines with defects and verify the simulation results. The experimental results show that the developed system can detect multiple through-hole defects in the pipeline specimen, and the longitudinal positioning error can be controlled below 1. 5%, which verifies that the array electromagnetic ultrasonic sensor pipeline inspection method can realize the defect imaging and defect positioning of the pipeline

    参考文献
    相似文献
    引证文献
引用本文

刘 轩,吕 炎,边 策,宋国荣,高 杰,何存富.管道电磁超声传感器阵列检测技术研究[J].电子测量与仪器学报,2023,37(11):24-32

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-30
  • 出版日期:
文章二维码