GNSS 多系统 PPP 中强跟踪自适应Kalman 滤波的应用
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

P228. 1;TN911. 72

基金项目:

合肥市北斗卫星导航重大应用示范项目资助


Application of strong tracking adaptive Kalman filter in GNSS multi-system PPP
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    精密单点定位(precise point positioning, PPP)技术由于操作简单、定位精度高,现已广泛应用于许多领域。 针对 PPP 解 算过程中周围环境改变可能带来的观测噪声和多路径效应,传统滤波算法无法解决其导致的精度下降的问题,本文提出一种强 跟踪自适应 Kalman 滤波(strong tracking adaptative Kalman filtering, SAKF)算法,通过引入渐消因子调整预测误差值,同时使用 IGGⅢ函数方法重构测量噪声协方差,从而实现 PPP 解算。 实验结果表明,在静态解算时,SAKF 定位精度较传统算法提升约 20%,在仿动态解算时,SAKF 定位精度提升约 55% ~ 60%,同时具有更好的收敛稳定性。

    Abstract:

    Precise point positioning (PPP) technology has been widely used in many fields because of its simple operation and high positioning accuracy. Aiming at the observation noise and multipath effect that may be caused by the change of surrounding environment, the traditional filtering algorithm cannot solve the problem of precision decline caused by it, this paper proposes a strong tracking adaptive Kalman filtering (SAKF) algorithm. The fading factor is introduced to adjust the prediction error value, and the measurement noise covariance is reconstructed by IGGⅢ function method, to achieve realize PPP solution. The experimental results show that the positioning accuracy of SAKF is improved by about 20% compared with the traditional algorithm in static solution, and it is improved by about 55% ~ 60% in quasi-dynamic solution, and it has better convergence stability.

    参考文献
    相似文献
    引证文献
引用本文

孔德龙,刘 春,何 敏,汪志宁. GNSS 多系统 PPP 中强跟踪自适应Kalman 滤波的应用[J].电子测量与仪器学报,2023,37(10):24-31

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-12-21
  • 出版日期:
文章二维码