SGCNet:一种轻量化的新能源汽车电池集流盘缺陷检测模型
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391. 41

基金项目:

国家自然科学基 金 ( 52072116, 52075107 )、 湖 北 省 自 然 科 学 基 金 项 目 ( 2022CFB53B)、 湖 北 省 教 育 厅 科 学 技 术 研 究 项 目(Q20201801)、湖北汽车工业学院博士科研启动基金( BK202004)、汽车动力传动与电子控制湖北省重点实验室( 湖北汽车工业学院)(ZDK1201603)项目资助


SGCNet: A lightweight defect detection model for new energy vehicle battery collector tray
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    集流盘作为新能源汽车电池的重要组成部件,其质量好坏关系到电池的性能,对车内人员的生命安全有着重要影响。 实际工业应用中,在有限的计算资源下对电池集流盘缺陷进行实时检测是一项具有挑战性的任务。 为了减小模型大小和计算 量,降低应用成本,本文提出一种轻量化的新能源汽车电池集流盘缺陷检测模型( SGCNet)。 首先,采用 ShuffleNet V2 作为主干 特征提取网络,采用分组卷积和通道重排技术,在提取有效特征的同时降低计算复杂度,降低参数量。 其次,设计了轻量化的特 征融合网络 GC-FPN,采用轻量级 GhostNet 和 CARAFE 上采样算子,在减少参数冗余和保证检测精度的情况下充分保留特征图 的语义信息,从而降低了计算成本。 实验结果表明,SGCNet 模型检测准确率达到了 90. 6%,模型大小为 3. 2 M,GFLOPs 仅为 3. 6,帧率达到了 178. 6 fps。 与目前先进的轻量化网络模型相比,具有较高检测精度和较低的计算量。 最后,在嵌入式平台 NVIDIA Jetson Nano 上部署 SGCNet 模型,进行实时检测,每张图片的检测时间为 0. 07 s,满足实际工业中电池集流盘缺陷检测 任务对精度和实时性的要求。

    Abstract:

    As an important component of the new energy vehicle battery, the quality of the collector tray is related to the performance of the battery and has an important impact on the life safety of the vehicle occupants. In practical industrial applications, real-time detection of battery collector tray defects with limited computational resources is a challenging task. In order to reduce the model size and computational effort, and to reduce the application cost, this paper proposes a lightweight new energy vehicle battery collector tray defect detection model (SGCNet). First, ShuffleNet V2 is used as the backbone feature extraction network, and group convolution and channel shuffle techniques are adopted to reduce the computational complexity and the number of parameters while extracting effective features. Secondly, a lightweight feature fusion network GC-FPN is designed with lightweight GhostNet and CARAFE upsampling operators to fully retain the semantic information of the feature map while reducing parameter redundancy and ensuring detection accuracy, thus reducing the computational cost. The experimental results show that the SGCNet model achieves 90. 6% detection accuracy, the model size is 3. 2 M, the GFLOPs are only 3. 6, and the FPS reaches 178. 6. Compared with the current advanced lightweight network models, it has higher detection accuracy and lower computational effort. Finally, the SGCNet model is deployed on the embedded platform NVIDIA Jetson Nano for real-time detection, with a detection time of 0. 07 s per image, meeting the requirements for accuracy and real-time performance for battery collector defect detection tasks in real industry.

    参考文献
    相似文献
    引证文献
引用本文

袁 磊,唐 海,陈彦蓉,高 刃,吴文欢. SGCNet:一种轻量化的新能源汽车电池集流盘缺陷检测模型[J].电子测量与仪器学报,2023,37(10):172-182

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-12-21
  • 出版日期:
文章二维码