基于优化变分模态分解的海杂波去噪方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN911. 7

基金项目:

国家自然科学基金(62171228)、国家重点研发计划(2021YFE0105500)项目资助


Sea clutter denoising algorithm based on optimized variational mode decomposition
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    文章分析了确定变分模态分解(VMD)参数存在的问题,提出了一种基于优化变分模态分解的海杂波去噪方法。 利用 鲸鱼优化算法(WOA)对模态个数 K 和惩罚参数 α 进行寻优,对海杂波原信号自适应分解,去除方差贡献率(VCR)较低模态分 量,结合模糊熵筛选出噪声占主导的模态分量,将其进行 Savitzky-Golay(SG)滤波处理。 对滤波后的分量和有用分量叠加重构 去噪后的信号,通过最小二乘支持向量机(LSSVM)对海杂波信号进行预测并验证去噪效果。 仿真结果表明,本文所提算法能 够有效抑制噪声干扰,去噪后的均方根误差(RMSE)为 0. 000 29,比去噪前的均方根误差 0. 012 3 降低了两个数量级。

    Abstract:

    The problem of determining the parameters of variational mode decomposition (VMD) is analyzed, and a sea clutter denoising method based on optimized variational mode decomposition (VMD) is proposed. The whale optimization algorithm (WOA) was used to optimize the number of modes K and penalty parameters, and the original sea clutter signal was decomposed adaptively to remove the modal component with low variance contribution rate (VCR). The modal component dominated by noise was screened by combining with fuzzy entropy and processed by Savitzky-Golay (SG) filtering. The least square support vector machine (LSSVM) was used to predict the sea clutter signal and verify the denoising effect for the signal reconstructed by superposition of filtered component and useful component. Simulation results show that the proposed algorithm can effectively suppress noise interference, and the root mean square error (RMSE) after denoising is 0. 000 29, which is two orders of magnitude lower than the root mean square error (RMSE) before denoising is 0. 012 3.

    参考文献
    相似文献
    引证文献
引用本文

周 星,行鸿彦,叶 如,赵 迪.基于优化变分模态分解的海杂波去噪方法[J].电子测量与仪器学报,2023,37(11):81-90

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-30
  • 出版日期:
文章二维码