随机差分变异粒子群混合优化算法
CSTR:
作者:
作者单位:

东莞职业技术学院东莞523808

作者简介:

通讯作者:

中图分类号:

TN911;TP181

基金项目:

东莞市社会科技发展项目(2013108101045)、东莞职业技术学院示范建设专项资金(政201614)资助项目


Hybrid algorithm based on particle swarm optimization with stochastic differential mutation
Author:
Affiliation:

Dongguan Polytechnic College, Dongguan 523808, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统粒子群优化算法与差分进化算法都易出现早熟等问题,提出了一种随机差分变异粒子群混合优化算法。算法结合粒子群与差分算法的各自特点,首先采用差分变异方法产生试探性候选个体,再将其代入到粒子群速度更新公式,引导粒子飞行方向,从而扩大搜索空间,增强算法的全局勘探能力。为避免粒子陷入局部最优解,采用随机差分变异方式对当前最优粒子进行扰动,使算法在有效提高局部开采能力的同时,有效避免停滞现象的发生。算法分别在单峰及多峰等8个测试函数上与3个相关算法进行对比实验,实验结果表明,新的混合算法优于其他对比算法,有效提高了算法的性能。

    Abstract:

    To solve the problem of premature convergence in traditional particle swarm optimization (PSO) and differential evolution (DE), a hybrid algorithm based on particle swarm optimization with stochastic differential mutation is proposed in this paper. Combining with the characteristics between PSO and DE, the new algorithm firstly generates a candidate individual using differential mutation, and then put the individual into velocity update formula leading flight direction of particle, which can expand the search space and enhance the global explorative ability of algorithm. Meanwhile, a stochastic differential mutation method is presented to disturb the current optimal particle in order to avoid the best particle being trapped into local optima, since which may cause search stagnation. The new algorithm compared with three related algorithms on 8 benchmark functions including unimodal and multimodal test functions. The experimental results show that the new hybrid algorithm outperforms other comparative algorithms and greatly improves performance of algorithm.

    参考文献
    相似文献
    引证文献
引用本文

曹文梁.随机差分变异粒子群混合优化算法[J].电子测量与仪器学报,2017,31(6):928-933

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-08-02
  • 出版日期:
文章二维码