反背景差分结合Otsu的细胞图像分割方法*
DOI:
CSTR:
作者:
作者单位:

1.宁波大学高等技术研究院;2.宁波华仪宁创智能科技有限公司;3.宁波大学高等技术研究院 宁波

作者简介:

通讯作者:

中图分类号:

TN98;TP391.4

基金项目:

国家重点研发项目(2018YFC1603504)、国家自然科学基金(81401452)、宁波市自然科学基金(2017A610164)资助


Cell image segmentation method combined with anti-background difference and Otsu
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对相差显微镜采集的间充质干细胞图像具有对比度低、背景不均匀、光晕伪影等问题,提出了反背景差分结合Otsu的细胞图像分割方法。该方法通过构建反背景差分增强图像中细胞主体与非细胞区域的差异,降低背景不均匀干扰因素的影响,结合Otsu阈值分割法粗略区分细胞和背景,并通过二值形态学运算、图像滤波和局部梯度迭代的算法组合进一步修正分割结果。通过对实际采集的细胞图像进行分割验证,像素精确度、交并比、Dice相似性系数和汇合度误差四个评价指标分别达到了0.9338、0.7296、0.8524和0.07,表明该算法具有较高的分割性能,能客观、准确自动分析细胞汇合度,而且可以处理细胞不同培养时期的图像,具有较高的应用价值。

    Abstract:

    Aiming at the problems of low contrast, uneven background and halo artifacts in the images of mesenchymal stem cells collected by the phase contrast microscope, this paper proposes a cell image segmentation method combined with anti-background difference and Otsu. The method constructs anti-background difference to enhance the difference between the cell body and the non-cellular area and reduce the influence of uneven background, combines the Otsu threshold segmentation method to roughly distinguish the cells and the background, and further corrects the segmentation results by a combination of algorithms including binary morphology operations, image filtering, and local gradient iteration. The four evaluation indexes of pixel accuracy, intersection over union, dice similarity coefficient, and confluency error achieved values of 0.9338, 0.7296, 0.8524, and 0.07, respectively, by segmentation validation on the actually acquired cell images. The results indicate that the algorithm has high segmentation performance, can objectively, accurately and automatically analyze the confluency of cells, and can process images of cells in different culture periods, which has high application value.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-12-29
  • 最后修改日期:2021-02-19
  • 录用日期:2021-03-10
  • 在线发布日期:
  • 出版日期:
文章二维码