无人机航测高精度RTK接收机信号捕获与跟踪仿真方法研究
作者:
作者单位:

广东工业大学 机电工程学院 广州 510006

基金项目:

广东省省级科技计划项目(无人机航测用轻型高精度RTK模块关键技术研发 项目编号:2017B010117011)


Research on Simulation Method of Signal Acquisition and Tracking of UAV Aerial Survey High Precision RTK Receiver
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • | | | |
  • 文章评论
    摘要:

    近年来以载波相位差分技术为核心的实时动态(Real-time kinematic, RTK)高精度卫星定位技术在测绘领域迅速发展,本文基于RTK定位原理,以轻小型化、高精度、稳定快速卫星定位接收机为目标,研究无人机RTK接收机的多系统多频段全球导航卫星系统(Global Navigation Satellite System,GNSS)信号处理技术,包括GNSS多频射频前端处理、基带信号处理关键技术。通过专业仿真手段可以得出设计的射频前端接收灵敏度高于-130dBm,对6758个采样点搜索捕获的执行时间仅为0.68s,捕获频移误差约为多普勒频移的0.932%,载波跟踪稳定后频率误差基本集中在0.75KHz以下。仿真结果表明,设计的GNSS信号处理模块符合实际的多频RTK定位接收机要求。

    Abstract:

    In recent years, the real-time kinematic (RTK) high-precision satellite positioning technology with carrier phase difference technology as the core has developed rapidly in the field of surveying and mapping. This article is based on the RTK positioning principle, aiming at light and miniaturization, high precision, stable and fast satellite positioning receivers, the focus is on multi-system and multi-band Global Navigation Satellite System (GNSS) signal processing technology, including the GNSS multi-frequency RF front-end processing and baseband signal processing key technologies of the UAV RTK receiver. Through professional simulation methods, it can be concluded that the designed RF front-end receiving sensitivity is higher than -130dBm. The execution time for searching and capturing 6758 sampling points is only 0.68s, and the capture frequency shift error is about 0.932% of the Doppler frequency shift, and the frequency error after the GNSS signal carrier tracking stabilizes is basically concentrated below 0.75KHz. The simulation results show that the designed GNSS signal processing module meets the requirements of the actual multi-frequency RTK positioning receiver.

    参考文献
    [1] 郑光明. RTK定位技术在测绘中的应用[J]. 科技创新与应用, 2012(05):19-20.HENG G M. Application of RTK positioning technology in surveying and mapping[J]. Technological Innovation and Application, 2012(05):19-20.
    [2] 洪冰清, 覃新贤, 陈海强. 多系统兼容卫星导航接收机关键技术概述[J]. 电子科技, 2017(6).HONG B Q, QIN X X, CHEN H Q. Reviews on Key Techniques in Multiple Systems Combined GNSS Receivers[J]. Electronic Sci.&Tech, 2019, v.40(10):141-147.
    [3] 曹相, 王庆, 高成发. 基于BDS-3,GPS和Galileo重叠频率观测值的紧组合RTK定位方法[J]. 仪器仪表学报, 2019, v.40(10):141-147.AO X, WANG Q, GAO C F et al. Tightly combined RTK positioning method based on the overlapping-frequency observations of BDS-3,GPS and Galileo[J]. Chinese Journal of Scientific Instrument, 2019, v.40(10):141-147.
    [4] 王忠, 刘光斌, 张博. 基于DSP+FPGA的多频GPS接收机系统设计[J]. 计算机测量与控制, 2010, 18(008):1919-1920.ANG Z, LIU G B, ZHANG B. Design of Multi-frequency GPS Receiver System Based on DSP and FPGA[J]. Computer measurement control, 2010, 18(008):1919-1920.
    [5] 王亚平, 龚华军, 甄子洋. 基于ARM的GPS/BD2组合接收机设计与实现[J]. 电子测量技术, 2012, 000(012):67-70.ANG Y P, GONG H J, ZHEN Z Y. Design and implementation of GPS/BD2 receiver based on ARM[J]. Electronic measurement technology, 2012, 000(012):67-70.
    [6] 刘国燕, 喻国荣,等. 多星座CORS基站接收机设计及数据质量实时评价[J]. 测绘工程, 2020, 29(01):41-46.IU G Y, YU G R et al. Design of multi constellation CORS base station receiver and real-time evaluation of data quality[J]. Engineering of Surveying and Mapping, 2020, 29(01):41-46.
    [7] 彭奇斌, 张晓林, 张超,等. 双频GNSS接收机射频前端的系统设计[J]. 遥测遥控, 2007(05):17-21+74.ENG Q B, ZHANG X L, ZHANG C et al. System Design of RF Front End of Dual-frequency GNSS Receiver[J]. Journal of Telemetry, Tracking, and Command, 2007(05):17-21+74.
    [8] 李彦迪, 陈硕烁, 李文瑞. GPS/Galileo双频双模接收机射频前端的系统设计与实现[J]. 现代电子技术, 2013(17):81-84.I Y D, CHEN S S, LI W R. System design and implementation of GPS/Galileo dual-band and dual-mode RF front-end[J]. Modern Electronic Technology[J], 2013(17):81-84.
    [9] 李禛, 秦红磊. 卫星导航接收机通用射频前端设计及实现[J]. 电子测量技术, 2017(2).I Z, QIN H L. Design and implementation of general navigation receiver RF front-end[J]. Electronic measurement technology, 2017(2).
    [10] 孙希延, 纪元法, 施浒立. GPS软件基带信号处理与定位实现[J]. 系统仿真学报, 2007(24):5832-5836.UN X Y, JI Y F, SHI X L. GPS Baseband Signal Processing and Positioning Realization Based on Software Receiver[J]. Journal of System Simulation, 2007(24):5832-5836.
    [11] Gao X, Xi L, Yao R, et al. A high precision acquisitionalgorithm of GPS based on parallel frequency search[C]. Wireless Optical Communication Conference. IEEE, 2016.
    [12] DENG H G, WANG J, JI Y F, et al. Research on Fast FFTAcquisition Algorithm and its Realization on FPGA[J]. Video Engineering, 2012.
    [13] 何苏勤, 白天石. 射频电路的ADS设计仿真与分析[J].微电子学, 2011, 41(004):479-483.E S Q, BAI T S. Simulation and Analysis of RF Circuit Design Using ADS[J]. Microelectronics, 2011, 41(004):479-483.
    [14] 贾锋, 杨瑞民. 射频接收前端的ADS设计与仿真[J]. 计算机工程与应用, 2014, 50(13):219-223.IA F, YANG R M. ADS design and simulation of radio receiver front-end[J]. Computer Engineering and Applications, 2011, 41(004):479-483.
    [15] 张威, 张克, 徐熙宗. GPS信号C/A码生成算法设计及仿真实现[J]. 通信技术, 2008(11):216-218.AHNG W, ZHANG K, SUH H. Simulation Analysis of in GPS Signal C/A code Algorithm Design[J]. Communications Technology, 2008(11):216-218.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:466
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2020-10-28
  • 最后修改日期:2020-12-17
  • 录用日期:2020-12-21
文章二维码