ADAM改进BP神经网络与动态称重应用
DOI:
CSTR:
作者:
作者单位:

1.湖南大学电气与信息工程学院 长沙;2.湖南大学

作者简介:

通讯作者:

中图分类号:

TH715.1

基金项目:


Improved BP neural network with ADAM optimizer and the Application of Dynamic Weighing
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高动态检重秤的运行效率和测量准确度,深入分析了机械振动对测量的干扰及传感器非线性特性的产生机理。提出一种基于ADAM优化器的多层BP神经网络,实现了检重秤传感器的非线性校正,并准确估计了动态称量结果。试验对比经典梯度下降法、附加动量法、均方根传播法以及ADAM算法,结果表明ADAM算法综合考虑了参数梯度的一阶和二阶矩估计,具有更快的收敛速度,更准确的预测结果。最终实现满量程400 g,最高运行速度2 m/s的高速动态检重秤,型式测试结果表明其各指标均满足国家标准《GB/T 27739-2011 自动分检衡器》对XIII级检重秤的要求。

    Abstract:

    To improve the operational efficiency and measurement accuracy of the dynamic check weigher, the interference of mechanical vibration to the measurement and the generating mechanism of the sensor's nonlinear characteristics are deeply analyzed. A multi-layer BP neural network based on ADAM optimizer is proposed to realize the nonlinear correction of weighing sensor and estimates the dynamic weighing results accurately. The classical gradient descent algorithm, gradient descent algorithm with momentum and root-mean-square propagation algorithm are compared with the ADAM algorithm through experiment. According to the results, the ADAM algorithm had faster convergence speed and more accurate prediction results as it comprehensively considered the first and second sample moment of parameter's gradient. The high speed dynamic check weigher with full range of 400 g and maximum running speed of 2 m/s is manufactured, The type test results showed that all of its indicators are meet the requirements of national standard GB/T 27739-2011 Automatic Divider for XIII check weigher.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-10-20
  • 最后修改日期:2020-11-29
  • 录用日期:2020-12-28
  • 在线发布日期:
  • 出版日期:
文章二维码