基于多域特征的螺栓松动检测方法研究
DOI:
CSTR:
作者:
作者单位:

1.华东交通大学;2.株洲国创轨道科技有限公司;3.常州信息职业技术学院

作者简介:

通讯作者:

中图分类号:

TH212;TH213.3

基金项目:

国家自然科学基金项目(51805168,51565015), 及江西省教育厅项目(GJJ180301,GJJ190307),常州高技术重点实验室项目(CM20183004)


Research on bolt looseness detection method based on multi domain feature
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    螺栓作为机械设备最常用的连接件,螺栓连接的稳定性对保障机械设备安全运行起着至关重要的作用,对螺栓松动程度进行检测有着重要意义。本文针对螺栓松动四种不同状态,提出了一种基于变分模态分解(VMD)及时频敏感特征与最小二乘支持向量机(LSSVM)相结合的螺栓松动检测方法。针对螺栓松动的四种不同状态,搭建了螺栓松动检测模拟实验平台,通过加速度传感器获取螺栓松动四种不同状态振动响应数据;提取了时频域敏感特征量,结合VMD分解的IMF分量能量熵组成状态检测敏感多特征向量,将提取的多特征向量结合LSSVM对螺栓不同松动状态进行识别,并对比基于经验模态分解(EMD)-LSSVM及EMD-多特征-LSSVM检测结果,结果显示,本文提出的基于多域特征的螺栓松动检测方法识别率优于EMD-LSSVM检测方法。

    Abstract:

    Bolts are the most commonly used connectors for mechanical equipment. The stability of bolt connection plays an important role in ensuring the safe operation of mechanical equipment. It is of great significance to detect the state of bolt looseness.Aiming at the four different states of bolt loosening, a bolt looseness detection method based on variational mode decomposition (VMD) and time-frequency sensitive feature combined with least square support vector machine (LSSVM) is proposed in this paper.In order to identify the four different states of Bolt looseness, a simulation experimental platform for bolt loosening detection is built, and the vibration response data of four different states of bolt looseness are obtained by accelerometer.The time-frequency sensitive features are extracted, and the IMF component energy entropy decomposed by VMD is combined to form the sensitive multi-feature vector. The extracted multi-feature vectors are combined with least square support vector machine to detect different looseness states of bolts. The recognition results are compared with the results of based on empirical mode decomposition(EMD)-LSSVM and EMD multi-feature-LSSVM recognition.?The recognition rate of bolt looseness detection method based on proposed VMD multi-feature in this paper is better than that of EMD-LSSVM detection method .

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-10-13
  • 最后修改日期:2020-11-11
  • 录用日期:2020-12-10
  • 在线发布日期:
  • 出版日期:
文章二维码