基于LSTM长短期记忆网络的超短期风速预测
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

U298.12;U238

基金项目:

“十三五”国家重点研发计划 (2016YFB1200401)、载运工具先进制造与测控技术教育部重点实验室(北京交通大学)开放课题资助项目


Ultrashortterm wind speed prediction model using LSTM networks
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    大风天气容易导致高速列车发生脱轨、翻车等事故,因此对于风速的超短期预测对于高铁安全行驶具有重要的意义。提出一种基于长短期记忆(LSTM)网络的预测模型,对WindLog风速传感器采集得到的每分钟最大风速数据进行分组预处理,设置合理的步长参数,建立双层LSTM网络结构,采用北京市海淀区的风速数据进行训练,并对超前1、5、10 min的风速进行超前预测,超前1 min的预测值平均误差为0467 m/s,正确率达100%;超前5 min的预测值平均误差为0543 m/s,正确率达996%;超前10 min的预测值平均误差为0627 m/s,正确率达988%。实验结果表明,该预测模型具有较好的适应性和较高的预测精度。

    Abstract:

    Gale weather can easily cause highspeed train accidents such as derailment and rollover. Therefore, the ultra shortterm prediction of wind speed is of great significance for the safe operation of highspeed rail. A prediction model based on long shortterm memory (LSTM) networks is proposed in this paper. The maximum wind speed data per minute collected by WindLog wind speed sensor is preprocessed. The proposed model was trained using wind speed data of Haidian District, and the wind speeds 1, 5 and 10 min ahead were predicted. The mean absolute error (MAE) of 1min ahead prediction was 0467 m/s with the accuracy rate of 100%. The MAE of 5 min ahead prediction is 0543 m/s with the accuracy rate of 996%, the MAE of 10 min ahead prediction is 0627 m/s, and the accuracy rate was 988%. The experimental results show that the prediction model has better adaptability and higher prediction accuracy.

    参考文献
    相似文献
    引证文献
引用本文

魏昱洲,许西宁.基于LSTM长短期记忆网络的超短期风速预测[J].电子测量与仪器学报,2019,33(2):64-71

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-04
  • 出版日期:
文章二维码